Spaces:
Sleeping
Sleeping
# Enhanced Face-Based Lab Test Predictor with AI Models for 30 Lab Metrics | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
from sklearn.linear_model import LinearRegression | |
import random | |
mp_face_mesh = mp.solutions.face_mesh | |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) | |
def extract_features(image, landmarks): | |
mean_intensity = np.mean(image) | |
h, w, _ = image.shape | |
bbox_width = max(pt.x for pt in landmarks) - min(pt.x for pt in landmarks) | |
bbox_height = max(pt.y for pt in landmarks) - min(pt.y for pt in landmarks) | |
def dist(p1, p2): | |
return ((p1.x - p2.x)**2 + (p1.y - p2.y)**2) ** 0.5 | |
eye_dist = dist(landmarks[33], landmarks[263]) | |
nose_len = dist(landmarks[1], landmarks[2]) + dist(landmarks[2], landmarks[98]) | |
jaw_width = dist(landmarks[234], landmarks[454]) | |
left_cheek = landmarks[234] | |
right_cheek = landmarks[454] | |
cx1, cy1 = int(left_cheek.x * w), int(left_cheek.y * h) | |
cx2, cy2 = int(right_cheek.x * w), int(right_cheek.y * h) | |
skin_tone1 = np.mean(image[cy1-5:cy1+5, cx1-5:cx1+5]) if 5 <= cy1 < h-5 and 5 <= cx1 < w-5 else 0 | |
skin_tone2 = np.mean(image[cy2-5:cy2+5, cx2-5:cx2+5]) if 5 <= cy2 < h-5 and 5 <= cx2 < w-5 else 0 | |
avg_skin_tone = (skin_tone1 + skin_tone2) / 2 | |
return [mean_intensity, bbox_width, bbox_height, eye_dist, nose_len, jaw_width, avg_skin_tone] | |
def train_model(output_range): | |
X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2), | |
random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), | |
random.uniform(0.2, 0.5)] for _ in range(100)] | |
y = [random.uniform(*output_range) for _ in X] | |
model = LinearRegression().fit(X, y) | |
return model | |
models = { | |
"Hemoglobin": train_model((13.5, 17.5)), | |
"WBC Count": train_model((4.0, 11.0)), | |
"Platelet Count": train_model((150, 450)), | |
"Iron": train_model((60, 170)), | |
"Ferritin": train_model((30, 300)), | |
"TIBC": train_model((250, 400)), | |
"Bilirubin": train_model((0.3, 1.2)), | |
"Creatinine": train_model((0.6, 1.2)), | |
"Urea": train_model((7, 20)), | |
"Sodium": train_model((135, 145)), | |
"Potassium": train_model((3.5, 5.1)), | |
"TSH": train_model((0.4, 4.0)), | |
"Cortisol": train_model((5, 25)), | |
"FBS": train_model((70, 110)), | |
"HbA1c": train_model((4.0, 5.7)), | |
"Albumin": train_model((3.5, 5.5)), | |
"BP Systolic": train_model((90, 120)), | |
"BP Diastolic": train_model((60, 80)), | |
"Temperature": train_model((97, 99)) | |
} | |
def get_risk_color(value, normal_range): | |
low, high = normal_range | |
if value < low: | |
return ("Low", "🔻", "#FFCCCC") | |
elif value > high: | |
return ("High", "🔺", "#FFE680") | |
else: | |
return ("Normal", "✅", "#CCFFCC") | |
def build_table(title, rows): | |
html = ( | |
f'<div style="margin-bottom: 24px;">' | |
f'<h4 style="margin: 8px 0;">{title}</h4>' | |
f'<table style="width:100%; border-collapse:collapse;">' | |
f'<thead><tr style="background:#f0f0f0;"><th style="padding:8px;border:1px solid #ccc;">Test</th><th style="padding:8px;border:1px solid #ccc;">Result</th><th style="padding:8px;border:1px solid #ccc;">Expected Range</th><th style="padding:8px;border:1px solid #ccc;">Level</th></tr></thead><tbody>' | |
) | |
for label, value, ref in rows: | |
level, icon, bg = get_risk_color(value, ref) | |
html += f'<tr style="background:{bg};"><td style="padding:6px;border:1px solid #ccc;">{label}</td><td style="padding:6px;border:1px solid #ccc;">{value:.2f}</td><td style="padding:6px;border:1px solid #ccc;">{ref[0]} – {ref[1]}</td><td style="padding:6px;border:1px solid #ccc;">{icon} {level}</td></tr>' | |
html += '</tbody></table></div>' | |
return html | |