Spaces:
Sleeping
Sleeping
import gradio as gr | |
from flask import Flask, request, jsonify | |
# Flask app setup | |
app = Flask(__name__) | |
# Corrected Food Database with consistent food item names | |
FOOD_DATABASE = { | |
"veg": { | |
"paneer": { | |
"lowCalorie": [ | |
{"name": "Grilled Paneer Tikka", "description": "Marinated and grilled paneer cubes with spices", "calories": 180, "protein": 14}, | |
{"name": "Paneer Bhurji", "description": "Scrambled paneer with vegetables", "calories": 200, "protein": 16} | |
], | |
"highProtein": [ | |
{"name": "Protein Paneer Bowl", "description": "High protein paneer with quinoa", "calories": 320, "protein": 24}, | |
{"name": "Paneer Steak", "description": "Thick cut paneer steak with herbs", "calories": 280, "protein": 22} | |
] | |
}, | |
"mushroom": { | |
"lowCalorie": [ | |
{"name": "Grilled Mushroom Caps", "description": "Herb-stuffed mushroom caps", "calories": 120, "protein": 8}, | |
{"name": "Mushroom Soup", "description": "Creamy mushroom soup", "calories": 150, "protein": 6} | |
] | |
}, | |
"aloo": { | |
"lowCalorie": [ | |
{"name": "Baked Potato Wedges", "description": "Spiced and baked potato wedges", "calories": 160, "protein": 4}, | |
{"name": "Aloo Tikki", "description": "Spiced potato patties", "calories": 180, "protein": 3} | |
] | |
} | |
}, | |
"nonveg": { | |
"chicken": { | |
"highProtein": [ | |
{"name": "Grilled Chicken Breast", "description": "Herb-marinated grilled chicken", "calories": 250, "protein": 30}, | |
{"name": "Chicken Tikka", "description": "Tandoori spiced chicken pieces", "calories": 280, "protein": 32} | |
] | |
}, | |
"fish": { | |
"lowCalorie": [ | |
{"name": "Grilled Salmon", "description": "Lemon herb grilled salmon", "calories": 220, "protein": 25}, | |
{"name": "Steamed Fish", "description": "Ginger-garlic steamed fish", "calories": 180, "protein": 22} | |
] | |
}, | |
"mutton": { | |
"balanced": [ | |
{"name": "Mutton Curry", "description": "Traditional spiced mutton curry", "calories": 350, "protein": 28}, | |
{"name": "Grilled Lamb Chops", "description": "Herb-crusted lamb chops", "calories": 380, "protein": 32} | |
] | |
} | |
} | |
} | |
VEG_INGREDIENTS = ["Paneer", "Mushroom", "Aloo"] | |
NONVEG_TYPES = ["Chicken", "Fish", "Mutton"] | |
NUTRITION_OPTIONS = ["Low Calorie", "High Protein", "Low Carb", "Balanced", "Gluten Free"] | |
class ChatState: | |
def __init__(self): | |
self.step = "initial" | |
self.category = "" | |
self.ingredient = "" | |
self.nutrition = "" | |
chat_state = ChatState() | |
def process_message(message, history): | |
# Step 1: If initial step (asks if user wants to proceed) | |
if chat_state.step == "initial": | |
if "yes" in message.lower() or "yeah" in message.lower(): | |
chat_state.step = "category" | |
return "Great! Please select your preferred category: Vegetarian, Non-Vegetarian." | |
return "I'm here to help you customize your food. Would you like to proceed? (Yes/No)" | |
# Step 2: Category selection | |
elif chat_state.step == "category": | |
chat_state.category = message.lower() | |
chat_state.step = "ingredient" | |
if "vegetarian" in message.lower(): | |
return f"Great! What main ingredient would you like? Available options: {', '.join(VEG_INGREDIENTS)}" | |
elif "non-vegetarian" in message.lower(): | |
return f"Great! What type of meat would you prefer? Available options: {', '.join(NONVEG_TYPES)}" | |
return "Please select either Vegetarian or Non-Vegetarian." | |
# Step 3: Ingredient selection | |
elif chat_state.step == "ingredient": | |
chat_state.ingredient = message.lower().strip() # Ensure no extra spaces or case issues | |
# Determine if the ingredient belongs to Veg or Non-Veg category | |
category = "nonveg" if "non" in chat_state.category else "veg" | |
# Check if the ingredient exists in the food database | |
if chat_state.ingredient not in FOOD_DATABASE[category]: | |
chat_state.step = "initial" # Reset for new conversation | |
return f"Sorry, I don't have any data for {message}. Please select another ingredient." | |
# List available food items based on ingredient | |
food_items = FOOD_DATABASE[category][chat_state.ingredient] | |
food_item_names = [item['name'] for nutrition in food_items for item in food_items[nutrition]] | |
# Show available food items and move to nutrition selection | |
chat_state.step = "nutrition" | |
return f"Great! Here are the available food items for {message}:\n{', '.join(food_item_names)}\nNow, select your nutrition preference: {', '.join(NUTRITION_OPTIONS)}" | |
# Step 4: Nutrition preference | |
elif chat_state.step == "nutrition": | |
nutrition = message.lower().replace(" ", "").strip() # Remove spaces and make lowercase | |
chat_state.nutrition = nutrition | |
category = "nonveg" if "non" in chat_state.category else "veg" | |
ingredient = chat_state.ingredient | |
# Try to fetch the food items from the correct category, ingredient, and nutrition preference | |
try: | |
food_items = FOOD_DATABASE[category][ingredient][nutrition] | |
if not food_items: | |
return f"Sorry, no {nutrition.replace('_', ' ').title()} dishes are available for {ingredient}." | |
response = f"Here are some {nutrition.replace('_', ' ').title()} {ingredient} dishes for you:\n" | |
for item in food_items: | |
response += f"\n• {item['name']} ({item['calories']} cal, {item['protein']}g protein)\n {item['description']}" | |
chat_state.step = "initial" # Reset for new conversation | |
return response | |
except KeyError: | |
chat_state.step = "initial" # Reset for new conversation | |
return f"Sorry, I don't have any dishes for this combination." | |
return "I'm not sure how to help with that. Would you like to start over?" | |
# Gradio interface for the chatbot | |
def create_gradio_interface(): | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot([]) | |
msg = gr.Textbox(show_label=False, placeholder="Enter text and press enter") | |
clear = gr.Button("Clear") | |
# Function for user message input and history handling | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
# Function to handle bot's response | |
def bot(history): | |
user_message = history[-1][0] | |
bot_message = process_message(user_message, history) | |
history[-1][1] = bot_message | |
return history | |
msg.submit(user, [msg, chatbot], [msg, chatbot]).then(bot, chatbot, chatbot) | |
clear.click(lambda: None, None, chatbot) | |
return demo | |
# Start the Gradio interface and Flask app together | |
if __name__ == "__main__": | |
demo = create_gradio_interface() | |
demo.launch(share=True, inline=True) | |
# Run Flask app | |
app.run(debug=True, use_reloader=False) | |