Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
import matplotlib.pyplot as plt
|
4 |
-
import seaborn as sns
|
5 |
import pandas as pd
|
6 |
import torch
|
7 |
|
8 |
-
# Load model
|
9 |
-
model_id = "ibm-granite/granite-3b-code-instruct"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
model_id,
|
@@ -14,40 +13,40 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
14 |
torch_dtype=torch.float16
|
15 |
)
|
16 |
|
17 |
-
#
|
18 |
sentiment_analyzer = pipeline("sentiment-analysis")
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
21 |
user_profiles = {
|
22 |
"1001": {"location": "Hyderabad", "issues": ["traffic", "air pollution"]},
|
23 |
"1002": {"location": "Delhi", "issues": ["waste management", "noise"]},
|
24 |
}
|
25 |
|
26 |
-
#
|
27 |
-
submitted_data = []
|
28 |
-
|
29 |
-
# Chat Function (ChatGPT-style)
|
30 |
def chat_fn(message, history):
|
31 |
-
|
32 |
[{"role": "user", "content": message}],
|
33 |
tokenize=False,
|
34 |
add_generation_prompt=True
|
35 |
)
|
36 |
-
inputs = tokenizer(
|
37 |
outputs = model.generate(**inputs, max_new_tokens=200)
|
38 |
-
|
39 |
-
return
|
40 |
|
41 |
-
# Sentiment
|
42 |
def analyze_sentiment(text):
|
43 |
result = sentiment_analyzer(text)[0]
|
44 |
return f"{result['label']} ({result['score']*100:.2f}%)"
|
45 |
|
46 |
-
#
|
47 |
def collect_and_plot_feedback(comment, category):
|
48 |
sentiment = sentiment_analyzer(comment)[0]["label"]
|
49 |
submitted_data.append({"Category": category, "Sentiment": sentiment})
|
50 |
-
|
51 |
df = pd.DataFrame(submitted_data)
|
52 |
summary = df.groupby(['Category', 'Sentiment']).size().unstack(fill_value=0)
|
53 |
|
@@ -56,32 +55,31 @@ def collect_and_plot_feedback(comment, category):
|
|
56 |
plt.title("Live Citizen Sentiment by Category")
|
57 |
plt.ylabel("Count")
|
58 |
plt.tight_layout()
|
|
|
59 |
return f"Recorded sentiment: {sentiment}", fig
|
60 |
|
61 |
-
# Personalized
|
62 |
def personalized_response(user_id, query):
|
63 |
profile = user_profiles.get(user_id)
|
64 |
if not profile:
|
65 |
return "User profile not found. Please check your user ID."
|
|
|
66 |
context = f"User from {profile['location']} concerned with: {', '.join(profile['issues'])}. Question: {query}"
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
70 |
|
71 |
-
# Build
|
72 |
with gr.Blocks(title="Citizen AI β Intelligent Citizen Engagement Platform") as demo:
|
73 |
gr.Markdown("## π§ Citizen AI β Intelligent Citizen Engagement Platform")
|
74 |
|
75 |
with gr.Tab("π€ Chat Assistant"):
|
76 |
-
gr.ChatInterface(
|
77 |
fn=chat_fn,
|
78 |
title="π§ Ask Citizen AI",
|
79 |
-
theme="soft",
|
80 |
chatbot=gr.Chatbot(label="Citizen Chat"),
|
81 |
-
textbox=gr.Textbox(placeholder="Type your question here...", show_label=False)
|
82 |
-
retry_btn="π Retry",
|
83 |
-
clear_btn="ποΈ Clear",
|
84 |
-
submit_btn="β€ Send"
|
85 |
)
|
86 |
|
87 |
with gr.Tab("π Sentiment Analysis"):
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
import matplotlib.pyplot as plt
|
|
|
4 |
import pandas as pd
|
5 |
import torch
|
6 |
|
7 |
+
# Load your model (adjust if needed)
|
8 |
+
model_id = "ibm-granite/granite-3b-code-instruct"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
model_id,
|
|
|
13 |
torch_dtype=torch.float16
|
14 |
)
|
15 |
|
16 |
+
# Sentiment analysis pipeline
|
17 |
sentiment_analyzer = pipeline("sentiment-analysis")
|
18 |
|
19 |
+
# In-memory storage for feedback
|
20 |
+
submitted_data = []
|
21 |
+
|
22 |
+
# Dummy user profiles
|
23 |
user_profiles = {
|
24 |
"1001": {"location": "Hyderabad", "issues": ["traffic", "air pollution"]},
|
25 |
"1002": {"location": "Delhi", "issues": ["waste management", "noise"]},
|
26 |
}
|
27 |
|
28 |
+
# Chat function
|
|
|
|
|
|
|
29 |
def chat_fn(message, history):
|
30 |
+
prompt = tokenizer.apply_chat_template(
|
31 |
[{"role": "user", "content": message}],
|
32 |
tokenize=False,
|
33 |
add_generation_prompt=True
|
34 |
)
|
35 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
36 |
outputs = model.generate(**inputs, max_new_tokens=200)
|
37 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("assistant")[-1].strip()
|
38 |
+
return response
|
39 |
|
40 |
+
# Sentiment analysis
|
41 |
def analyze_sentiment(text):
|
42 |
result = sentiment_analyzer(text)[0]
|
43 |
return f"{result['label']} ({result['score']*100:.2f}%)"
|
44 |
|
45 |
+
# Feedback form + live dashboard
|
46 |
def collect_and_plot_feedback(comment, category):
|
47 |
sentiment = sentiment_analyzer(comment)[0]["label"]
|
48 |
submitted_data.append({"Category": category, "Sentiment": sentiment})
|
49 |
+
|
50 |
df = pd.DataFrame(submitted_data)
|
51 |
summary = df.groupby(['Category', 'Sentiment']).size().unstack(fill_value=0)
|
52 |
|
|
|
55 |
plt.title("Live Citizen Sentiment by Category")
|
56 |
plt.ylabel("Count")
|
57 |
plt.tight_layout()
|
58 |
+
|
59 |
return f"Recorded sentiment: {sentiment}", fig
|
60 |
|
61 |
+
# Personalized assistant
|
62 |
def personalized_response(user_id, query):
|
63 |
profile = user_profiles.get(user_id)
|
64 |
if not profile:
|
65 |
return "User profile not found. Please check your user ID."
|
66 |
+
|
67 |
context = f"User from {profile['location']} concerned with: {', '.join(profile['issues'])}. Question: {query}"
|
68 |
+
inputs = tokenizer(context, return_tensors="pt").to(model.device)
|
69 |
+
outputs = model.generate(**inputs, max_new_tokens=150)
|
70 |
+
reply = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
71 |
+
return reply
|
72 |
|
73 |
+
# Build app
|
74 |
with gr.Blocks(title="Citizen AI β Intelligent Citizen Engagement Platform") as demo:
|
75 |
gr.Markdown("## π§ Citizen AI β Intelligent Citizen Engagement Platform")
|
76 |
|
77 |
with gr.Tab("π€ Chat Assistant"):
|
78 |
+
chat = gr.ChatInterface(
|
79 |
fn=chat_fn,
|
80 |
title="π§ Ask Citizen AI",
|
|
|
81 |
chatbot=gr.Chatbot(label="Citizen Chat"),
|
82 |
+
textbox=gr.Textbox(placeholder="Type your question here...", show_label=False)
|
|
|
|
|
|
|
83 |
)
|
84 |
|
85 |
with gr.Tab("π Sentiment Analysis"):
|