Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,109 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
import pandas as pd
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Load model
|
9 |
+
model_id = "ibm-granite/granite-3b-code-instruct" # Replace with actual granite model if different
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_id,
|
13 |
+
device_map="auto",
|
14 |
+
torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
)
|
16 |
|
17 |
+
# Load sentiment analysis model
|
18 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
19 |
+
|
20 |
+
# Simulated citizen profiles
|
21 |
+
user_profiles = {
|
22 |
+
"1001": {"location": "Hyderabad", "issues": ["traffic", "air pollution"]},
|
23 |
+
"1002": {"location": "Delhi", "issues": ["waste management", "noise"]},
|
24 |
+
}
|
25 |
+
|
26 |
+
# Store submitted feedback during session
|
27 |
+
submitted_data = []
|
28 |
+
|
29 |
+
# Chat Function (ChatGPT-style)
|
30 |
+
def chat_fn(message, history):
|
31 |
+
full_prompt = tokenizer.apply_chat_template(
|
32 |
+
[{"role": "user", "content": message}],
|
33 |
+
tokenize=False,
|
34 |
+
add_generation_prompt=True
|
35 |
+
)
|
36 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
37 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
38 |
+
reply = tokenizer.decode(outputs[0], skip_special_tokens=True).split("assistant")[-1].strip()
|
39 |
+
return reply
|
40 |
+
|
41 |
+
# Sentiment Analysis
|
42 |
+
def analyze_sentiment(text):
|
43 |
+
result = sentiment_analyzer(text)[0]
|
44 |
+
return f"{result['label']} ({result['score']*100:.2f}%)"
|
45 |
+
|
46 |
+
# Live Feedback β Dashboard
|
47 |
+
def collect_and_plot_feedback(comment, category):
|
48 |
+
sentiment = sentiment_analyzer(comment)[0]["label"]
|
49 |
+
submitted_data.append({"Category": category, "Sentiment": sentiment})
|
50 |
+
|
51 |
+
df = pd.DataFrame(submitted_data)
|
52 |
+
summary = df.groupby(['Category', 'Sentiment']).size().unstack(fill_value=0)
|
53 |
+
|
54 |
+
fig, ax = plt.subplots(figsize=(8, 5))
|
55 |
+
summary.plot(kind='bar', stacked=True, ax=ax, colormap="Set2")
|
56 |
+
plt.title("Live Citizen Sentiment by Category")
|
57 |
+
plt.ylabel("Count")
|
58 |
+
plt.tight_layout()
|
59 |
+
return f"Recorded sentiment: {sentiment}", fig
|
60 |
+
|
61 |
+
# Personalized Contextual Assistant
|
62 |
+
def personalized_response(user_id, query):
|
63 |
+
profile = user_profiles.get(user_id)
|
64 |
+
if not profile:
|
65 |
+
return "User profile not found. Please check your user ID."
|
66 |
+
context = f"User from {profile['location']} concerned with: {', '.join(profile['issues'])}. Question: {query}"
|
67 |
+
input_tokens = tokenizer(context, return_tensors="pt").to(model.device)
|
68 |
+
output = model.generate(**input_tokens, max_new_tokens=150)
|
69 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
70 |
+
|
71 |
+
# Build Gradio App
|
72 |
+
with gr.Blocks(title="Citizen AI β Intelligent Citizen Engagement Platform") as demo:
|
73 |
+
gr.Markdown("## π§ Citizen AI β Intelligent Citizen Engagement Platform")
|
74 |
+
|
75 |
+
with gr.Tab("π€ Chat Assistant"):
|
76 |
+
gr.ChatInterface(
|
77 |
+
fn=chat_fn,
|
78 |
+
title="π§ Ask Citizen AI",
|
79 |
+
theme="soft",
|
80 |
+
chatbot=gr.Chatbot(label="Citizen Chat"),
|
81 |
+
textbox=gr.Textbox(placeholder="Type your question here...", show_label=False),
|
82 |
+
retry_btn="π Retry",
|
83 |
+
clear_btn="ποΈ Clear",
|
84 |
+
submit_btn="β€ Send"
|
85 |
+
)
|
86 |
+
|
87 |
+
with gr.Tab("π Sentiment Analysis"):
|
88 |
+
sentiment_input = gr.Textbox(label="Enter citizen comment")
|
89 |
+
sentiment_output = gr.Textbox(label="Sentiment Result")
|
90 |
+
analyze_btn = gr.Button("Analyze")
|
91 |
+
analyze_btn.click(analyze_sentiment, inputs=sentiment_input, outputs=sentiment_output)
|
92 |
+
|
93 |
+
with gr.Tab("π Live Dashboard"):
|
94 |
+
gr.Markdown("### π¬ Submit Feedback and Watch Sentiment Grow Live")
|
95 |
+
comment_input = gr.Textbox(label="Citizen Feedback")
|
96 |
+
category_input = gr.Dropdown(choices=["Healthcare", "Sanitation", "Transport", "Education"], label="Category")
|
97 |
+
submit_button = gr.Button("Submit Feedback")
|
98 |
+
sentiment_display = gr.Textbox(label="Detected Sentiment")
|
99 |
+
live_chart = gr.Plot(label="Live Sentiment Chart")
|
100 |
+
submit_button.click(collect_and_plot_feedback, inputs=[comment_input, category_input], outputs=[sentiment_display, live_chart])
|
101 |
+
|
102 |
+
with gr.Tab("𧬠Personalized AI Response"):
|
103 |
+
uid_input = gr.Textbox(label="User ID (e.g., 1001)")
|
104 |
+
query_input = gr.Textbox(label="Your query")
|
105 |
+
response_output = gr.Textbox(label="AI Response")
|
106 |
+
personal_btn = gr.Button("Generate Personalized Response")
|
107 |
+
personal_btn.click(personalized_response, inputs=[uid_input, query_input], outputs=response_output)
|
108 |
|
109 |
+
demo.launch(share=True)
|
|