File size: 7,719 Bytes
506a2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright (c) 2025 Resemble AI
# Author: Manmay Nakhashi
# MIT License
import math

import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange


class RelativePositionBias(nn.Module):
    def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8):
        super().__init__()
        self.scale = scale
        self.causal = causal
        self.num_buckets = num_buckets
        self.max_distance = max_distance
        self.relative_attention_bias = nn.Embedding(num_buckets, heads)

    @staticmethod
    def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128):
        ret = 0
        n = -relative_position
        if not causal:
            num_buckets //= 2
            ret += (n < 0).long() * num_buckets
            n = torch.abs(n)
        else:
            n = torch.max(n, torch.zeros_like(n))

        max_exact = num_buckets // 2
        is_small = n < max_exact

        val_if_large = max_exact + (
                torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
        ).long()
        val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))

        ret += torch.where(is_small, n, val_if_large)
        return ret

    def forward(self, qk_dots):
        i, j, device = *qk_dots.shape[-2:], qk_dots.device
        q_pos = torch.arange(i, dtype=torch.long, device=device)
        k_pos = torch.arange(j, dtype=torch.long, device=device)
        rel_pos = k_pos[None, :] - q_pos[:, None]
        rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets,
                                                   max_distance=self.max_distance)
        values = self.relative_attention_bias(rp_bucket)
        bias = rearrange(values, 'i j h -> () h i j')
        return qk_dots + (bias * self.scale)


class AttentionQKV(nn.Module):
    def __init__(self, n_heads, head_dim, dropout_rate=0.1, scale=None, flash=False):
        super().__init__()
        self.n_heads = n_heads
        self.head_dim = head_dim
        self.scale = scale if scale is not None else head_dim ** -0.5
        self.flash = flash
        self.dropout_rate = dropout_rate
        self.dropout = nn.Dropout(dropout_rate)
        self.flash_config = self.setup_flash_config() if flash else None

    def setup_flash_config(self):
        # Setup flash attention configuration
        flash_config = {
            'enable_flash': True,
            'enable_math': True,
            'enable_mem_efficient': True
        }
        return flash_config

    def forward(self, q, k, v, mask=None):
        q, k, v = [self.split_heads(tensor) for tensor in [q, k, v]]
        if self.flash:
            out = self.flash_attention(q, k, v, mask=mask)
        else:
            out = self.scaled_dot_product_attention(q, k, v, mask=mask)

        return self.combine_heads(out)

    def scaled_dot_product_attention(self, q, k, v, mask=None):
        sim = torch.einsum("bhlt,bhls->bhts", q, k) * self.scale
        if mask is not None:
            sim = sim.masked_fill(mask == 0, float('-inf'))
        attn = torch.softmax(sim, dim=-1)
        attn = self.dropout(attn)
        return torch.einsum("bhts,bhls->bhlt", attn, v)

    def flash_attention(self, q, k, v, mask=None):
        config = self.flash_config if self.flash_config else {}
        with torch.backends.cuda.sdp_kernel(**config):
            out = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask=mask,
                dropout_p=self.dropout_rate if self.training else 0.
            )
        return out

    def split_heads(self, x):
        bs, length, _ = x.shape
        x = x.view(bs, length, self.n_heads, self.head_dim)
        return x.permute(0, 2, 1, 3)

    def combine_heads(self, x):
        bs, _, length, _ = x.shape
        x = x.permute(0, 2, 1, 3).contiguous()
        return x.view(bs, length, -1)


class AttentionBlock2(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other,
    using AttentionQKV and separate linear transformations for Q, K, and V.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
        relative_pos_embeddings=False,
        flash_attention=True,
        dropout_rate=0.2,
        scale=None
    ):
        super().__init__()
        self.channels = channels

        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels

        self.norm = nn.LayerNorm(channels)

        # Separate linear layers for Q, K, and V
        self.to_q = nn.Linear(channels, channels)
        self.to_k = nn.Linear(channels, channels)
        self.to_v = nn.Linear(channels, channels)

        self.attention = AttentionQKV(self.num_heads, channels // self.num_heads, dropout_rate=dropout_rate, flash=flash_attention, scale=scale)

        self.proj_out = nn.Linear(channels, channels)

        if relative_pos_embeddings:
            self.relative_pos_embeddings = RelativePositionBias(scale=(channels // self.num_heads) ** .5, causal=False, heads=num_heads, num_buckets=32, max_distance=64)
        else:
            self.relative_pos_embeddings = None

    def forward(self, x1, x2, mask=None):
        b1, c1, *spatial1 = x1.shape
        b2, c2, *spatial2 = x2.shape

        x1_norm = self.norm(x1)
        x2_norm = self.norm(x2)

        q = self.to_q(x1_norm)
        k = self.to_k(x2_norm)
        v = self.to_v(x2_norm)

        h = self.attention(q, k, v, mask=mask)
        h = self.proj_out(h)

        return (x1 + h).reshape(b1, c1, *spatial1)


class Perceiver(nn.Module):
    """Inspired by https://arxiv.org/abs/2103.03206"""
    def __init__(self, pre_attention_query_token=32, pre_attention_query_size=1024, embedding_dim=1024, num_attn_heads=4):
        """
        Initialize the perceiver module.

        :param pre_attention_query_token: Number of query tokens for pre-attention
        :param pre_attention_query_size: Size of each query token
        :param embedding_dim: Dimension of the embedding space
        :param num_attn_heads: Number of attention heads
        """
        super().__init__()

        # Initialize the pre-attention query parameter
        self.pre_attention_query = torch.nn.Parameter(
            torch.empty(1, pre_attention_query_token, pre_attention_query_size)
        )

        # Calculate the variance for uniform initialization
        query_variance = math.sqrt(3.0) * math.sqrt(2.0 / (pre_attention_query_token + pre_attention_query_token))

        # Initialize the pre-attention query with uniform distribution
        self.pre_attention_query.data.uniform_(-query_variance, query_variance)

        # Initialize the attention block
        self.attn = AttentionBlock2(embedding_dim, num_attn_heads)

    def forward(self, h):
        """
        Forward pass of the perceiver module.
        :param h: Input tensor
        :return: Output after applying attention mechanisms
        """
        # Expand the pre-attention query to match the batch size of the input
        query_ = self.pre_attention_query.expand(h.shape[0], -1, -1)
        # Apply the first attention mechanism (cross-attention)
        pre_att = self.attn(query_, h)
        # Apply the second attention mechanism (self-attention)
        attn = self.attn(pre_att, pre_att)
        return attn