Sulai2005's picture
Initial commit
506a2b4
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
# Modified from 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker)
from collections import OrderedDict
import torch
import torch.nn.functional as F
import torch.utils.checkpoint as cp
import torchaudio.compliance.kaldi as Kaldi
def pad_list(xs, pad_value):
"""Perform padding for the list of tensors.
Args:
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
pad_value (float): Value for padding.
Returns:
Tensor: Padded tensor (B, Tmax, `*`).
Examples:
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
>>> x
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
>>> pad_list(x, 0)
tensor([[1., 1., 1., 1.],
[1., 1., 0., 0.],
[1., 0., 0., 0.]])
"""
n_batch = len(xs)
max_len = max(x.size(0) for x in xs)
pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)
for i in range(n_batch):
pad[i, : xs[i].size(0)] = xs[i]
return pad
def extract_feature(audio):
features = []
feature_times = []
feature_lengths = []
for au in audio:
feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80)
feature = feature - feature.mean(dim=0, keepdim=True)
features.append(feature)
feature_times.append(au.shape[0])
feature_lengths.append(feature.shape[0])
# padding for batch inference
features_padded = pad_list(features, pad_value=0)
# features = torch.cat(features)
return features_padded, feature_lengths, feature_times
class BasicResBlock(torch.nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicResBlock, self).__init__()
self.conv1 = torch.nn.Conv2d(
in_planes, planes, kernel_size=3, stride=(stride, 1), padding=1, bias=False
)
self.bn1 = torch.nn.BatchNorm2d(planes)
self.conv2 = torch.nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = torch.nn.BatchNorm2d(planes)
self.shortcut = torch.nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = torch.nn.Sequential(
torch.nn.Conv2d(
in_planes,
self.expansion * planes,
kernel_size=1,
stride=(stride, 1),
bias=False,
),
torch.nn.BatchNorm2d(self.expansion * planes),
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class FCM(torch.nn.Module):
def __init__(self, block=BasicResBlock, num_blocks=[2, 2], m_channels=32, feat_dim=80):
super(FCM, self).__init__()
self.in_planes = m_channels
self.conv1 = torch.nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = torch.nn.BatchNorm2d(m_channels)
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=2)
self.layer2 = self._make_layer(block, m_channels, num_blocks[0], stride=2)
self.conv2 = torch.nn.Conv2d(
m_channels, m_channels, kernel_size=3, stride=(2, 1), padding=1, bias=False
)
self.bn2 = torch.nn.BatchNorm2d(m_channels)
self.out_channels = m_channels * (feat_dim // 8)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return torch.nn.Sequential(*layers)
def forward(self, x):
x = x.unsqueeze(1)
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = F.relu(self.bn2(self.conv2(out)))
shape = out.shape
out = out.reshape(shape[0], shape[1] * shape[2], shape[3])
return out
def get_nonlinear(config_str, channels):
nonlinear = torch.nn.Sequential()
for name in config_str.split("-"):
if name == "relu":
nonlinear.add_module("relu", torch.nn.ReLU(inplace=True))
elif name == "prelu":
nonlinear.add_module("prelu", torch.nn.PReLU(channels))
elif name == "batchnorm":
nonlinear.add_module("batchnorm", torch.nn.BatchNorm1d(channels))
elif name == "batchnorm_":
nonlinear.add_module("batchnorm", torch.nn.BatchNorm1d(channels, affine=False))
else:
raise ValueError("Unexpected module ({}).".format(name))
return nonlinear
def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2):
mean = x.mean(dim=dim)
std = x.std(dim=dim, unbiased=unbiased)
stats = torch.cat([mean, std], dim=-1)
if keepdim:
stats = stats.unsqueeze(dim=dim)
return stats
class StatsPool(torch.nn.Module):
def forward(self, x):
return statistics_pooling(x)
class TDNNLayer(torch.nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
bias=False,
config_str="batchnorm-relu",
):
super(TDNNLayer, self).__init__()
if padding < 0:
assert (
kernel_size % 2 == 1
), "Expect equal paddings, but got even kernel size ({})".format(kernel_size)
padding = (kernel_size - 1) // 2 * dilation
self.linear = torch.nn.Conv1d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
)
self.nonlinear = get_nonlinear(config_str, out_channels)
def forward(self, x):
x = self.linear(x)
x = self.nonlinear(x)
return x
class CAMLayer(torch.nn.Module):
def __init__(
self, bn_channels, out_channels, kernel_size, stride, padding, dilation, bias, reduction=2
):
super(CAMLayer, self).__init__()
self.linear_local = torch.nn.Conv1d(
bn_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
)
self.linear1 = torch.nn.Conv1d(bn_channels, bn_channels // reduction, 1)
self.relu = torch.nn.ReLU(inplace=True)
self.linear2 = torch.nn.Conv1d(bn_channels // reduction, out_channels, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
y = self.linear_local(x)
context = x.mean(-1, keepdim=True) + self.seg_pooling(x)
context = self.relu(self.linear1(context))
m = self.sigmoid(self.linear2(context))
return y * m
def seg_pooling(self, x, seg_len=100, stype="avg"):
if stype == "avg":
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
elif stype == "max":
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
else:
raise ValueError("Wrong segment pooling type.")
shape = seg.shape
seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1)
seg = seg[..., : x.shape[-1]]
return seg
class CAMDenseTDNNLayer(torch.nn.Module):
def __init__(
self,
in_channels,
out_channels,
bn_channels,
kernel_size,
stride=1,
dilation=1,
bias=False,
config_str="batchnorm-relu",
memory_efficient=False,
):
super(CAMDenseTDNNLayer, self).__init__()
assert kernel_size % 2 == 1, "Expect equal paddings, but got even kernel size ({})".format(
kernel_size
)
padding = (kernel_size - 1) // 2 * dilation
self.memory_efficient = memory_efficient
self.nonlinear1 = get_nonlinear(config_str, in_channels)
self.linear1 = torch.nn.Conv1d(in_channels, bn_channels, 1, bias=False)
self.nonlinear2 = get_nonlinear(config_str, bn_channels)
self.cam_layer = CAMLayer(
bn_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
)
def bn_function(self, x):
return self.linear1(self.nonlinear1(x))
def forward(self, x):
if self.training and self.memory_efficient:
x = cp.checkpoint(self.bn_function, x)
else:
x = self.bn_function(x)
x = self.cam_layer(self.nonlinear2(x))
return x
class CAMDenseTDNNBlock(torch.nn.ModuleList):
def __init__(
self,
num_layers,
in_channels,
out_channels,
bn_channels,
kernel_size,
stride=1,
dilation=1,
bias=False,
config_str="batchnorm-relu",
memory_efficient=False,
):
super(CAMDenseTDNNBlock, self).__init__()
for i in range(num_layers):
layer = CAMDenseTDNNLayer(
in_channels=in_channels + i * out_channels,
out_channels=out_channels,
bn_channels=bn_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
bias=bias,
config_str=config_str,
memory_efficient=memory_efficient,
)
self.add_module("tdnnd%d" % (i + 1), layer)
def forward(self, x):
for layer in self:
x = torch.cat([x, layer(x)], dim=1)
return x
class TransitLayer(torch.nn.Module):
def __init__(self, in_channels, out_channels, bias=True, config_str="batchnorm-relu"):
super(TransitLayer, self).__init__()
self.nonlinear = get_nonlinear(config_str, in_channels)
self.linear = torch.nn.Conv1d(in_channels, out_channels, 1, bias=bias)
def forward(self, x):
x = self.nonlinear(x)
x = self.linear(x)
return x
class DenseLayer(torch.nn.Module):
def __init__(self, in_channels, out_channels, bias=False, config_str="batchnorm-relu"):
super(DenseLayer, self).__init__()
self.linear = torch.nn.Conv1d(in_channels, out_channels, 1, bias=bias)
self.nonlinear = get_nonlinear(config_str, out_channels)
def forward(self, x):
if len(x.shape) == 2:
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1)
else:
x = self.linear(x)
x = self.nonlinear(x)
return x
# @tables.register("model_classes", "CAMPPlus")
class CAMPPlus(torch.nn.Module):
def __init__(
self,
feat_dim=80,
embedding_size=192,
growth_rate=32,
bn_size=4,
init_channels=128,
config_str="batchnorm-relu",
memory_efficient=True,
output_level="segment",
**kwargs,
):
super().__init__()
self.head = FCM(feat_dim=feat_dim)
channels = self.head.out_channels
self.output_level = output_level
self.xvector = torch.nn.Sequential(
OrderedDict(
[
(
"tdnn",
TDNNLayer(
channels,
init_channels,
5,
stride=2,
dilation=1,
padding=-1,
config_str=config_str,
),
),
]
)
)
channels = init_channels
for i, (num_layers, kernel_size, dilation) in enumerate(
zip((12, 24, 16), (3, 3, 3), (1, 2, 2))
):
block = CAMDenseTDNNBlock(
num_layers=num_layers,
in_channels=channels,
out_channels=growth_rate,
bn_channels=bn_size * growth_rate,
kernel_size=kernel_size,
dilation=dilation,
config_str=config_str,
memory_efficient=memory_efficient,
)
self.xvector.add_module("block%d" % (i + 1), block)
channels = channels + num_layers * growth_rate
self.xvector.add_module(
"transit%d" % (i + 1),
TransitLayer(channels, channels // 2, bias=False, config_str=config_str),
)
channels //= 2
self.xvector.add_module("out_nonlinear", get_nonlinear(config_str, channels))
if self.output_level == "segment":
self.xvector.add_module("stats", StatsPool())
self.xvector.add_module(
"dense", DenseLayer(channels * 2, embedding_size, config_str="batchnorm_")
)
else:
assert (
self.output_level == "frame"
), "`output_level` should be set to 'segment' or 'frame'. "
for m in self.modules():
if isinstance(m, (torch.nn.Conv1d, torch.nn.Linear)):
torch.nn.init.kaiming_normal_(m.weight.data)
if m.bias is not None:
torch.nn.init.zeros_(m.bias)
def forward(self, x):
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
x = self.head(x)
x = self.xvector(x)
if self.output_level == "frame":
x = x.transpose(1, 2)
return x
def inference(self, audio_list):
speech, speech_lengths, speech_times = extract_feature(audio_list)
results = self.forward(speech.to(torch.float32))
return results