Spaces:
Running
Running
# Copyright (c) 2025 Resemble AI | |
# MIT License | |
import logging | |
from typing import Union, Optional, List | |
from tqdm import tqdm | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, Tensor | |
from transformers import LlamaModel, LlamaConfig | |
from transformers.generation.logits_process import MinPLogitsWarper, RepetitionPenaltyLogitsProcessor, TopPLogitsWarper | |
from .modules.learned_pos_emb import LearnedPositionEmbeddings | |
from .modules.cond_enc import T3CondEnc, T3Cond | |
from .modules.t3_config import T3Config | |
from .llama_configs import LLAMA_CONFIGS | |
from .inference.t3_hf_backend import T3HuggingfaceBackend | |
from ..utils import AttrDict | |
logger = logging.getLogger(__name__) | |
def _ensure_BOT_EOT(text_tokens: Tensor, hp): | |
B = text_tokens.size(0) | |
assert (text_tokens == hp.start_text_token).int().sum() >= B, "missing start_text_token" | |
assert (text_tokens == hp.stop_text_token).int().sum() >= B, "missing stop_text_token" | |
class T3(nn.Module): | |
""" | |
Token-To-Token (T3) TTS model using huggingface transformer models as backbones, | |
* tokenization, including start / stop tokens are always added externally to this class | |
* conditioning data like CLAP, emotion, etc are all in a separate file for more modularity | |
* careful! this class assumes relative positional encoding -- with absolute PE, we would at | |
least want to reset the position to 0 when speech tokens begin, and optionally use a | |
different PE embedding space for speech. | |
""" | |
def __init__(self, hp=T3Config()): | |
super().__init__() | |
self.hp = hp | |
self.cfg = LlamaConfig(**LLAMA_CONFIGS[hp.llama_config_name]) | |
self.tfmr = LlamaModel(self.cfg) | |
self.dim = self.cfg.hidden_size | |
self.deepspeed_patch_applied = False | |
# conditioning / embedding | |
self.cond_enc = T3CondEnc(hp) | |
self.text_emb = nn.Embedding(hp.text_tokens_dict_size, self.dim) | |
self.speech_emb = nn.Embedding(hp.speech_tokens_dict_size, self.dim) | |
# custom position embedding | |
if hp.input_pos_emb == "learned": | |
max_text_seq_len = hp.max_text_tokens + 2 | |
self.text_pos_emb = LearnedPositionEmbeddings(max_text_seq_len, self.dim) | |
max_mel_seq_len = hp.max_speech_tokens + 2 + 2 | |
self.speech_pos_emb = LearnedPositionEmbeddings(max_mel_seq_len, self.dim) | |
# logit projection | |
self.text_head = nn.Linear(self.cfg.hidden_size, hp.text_tokens_dict_size, bias=False) | |
self.speech_head = nn.Linear(self.cfg.hidden_size, hp.speech_tokens_dict_size, bias=False) | |
self.compiled = False | |
def device(self): | |
return self.speech_head.weight.device | |
def prepare_conditioning(self, t3_cond: T3Cond): | |
""" | |
Token cond data needs to be embedded, so that needs to be here instead of in `T3CondEnc`. | |
""" | |
if t3_cond.cond_prompt_speech_tokens is not None and t3_cond.cond_prompt_speech_emb is None: | |
t3_cond.cond_prompt_speech_emb = self.speech_emb(t3_cond.cond_prompt_speech_tokens) + \ | |
self.speech_pos_emb(t3_cond.cond_prompt_speech_tokens) | |
return self.cond_enc(t3_cond) # (B, len_cond, dim) | |
def prepare_input_embeds( | |
self, | |
*, | |
t3_cond: T3Cond, | |
text_tokens: torch.LongTensor, | |
speech_tokens: torch.LongTensor, | |
cfg_weight: float = 0.0, | |
): | |
# prepare input embeddings (skip backbone tranformer embeddings) | |
cond_emb = self.prepare_conditioning(t3_cond) # (B, len_cond, dim) | |
text_emb = self.text_emb(text_tokens) # (B, len_text, dim) | |
if cfg_weight > 0.0: | |
text_emb[1].zero_() # CFG uncond | |
speech_emb = self.speech_emb(speech_tokens) # (B, len_speech, dim) | |
if self.hp.input_pos_emb == "learned": | |
text_emb = text_emb + self.text_pos_emb(text_tokens) | |
speech_emb = speech_emb + self.speech_pos_emb(speech_tokens) | |
len_cond = cond_emb.size(1) | |
if cond_emb.size(0) != text_emb.size(0): | |
cond_emb = cond_emb.expand(text_emb.size(0), -1, -1) | |
# concat | |
embeds = torch.stack([ | |
torch.cat((ce, te, se)) | |
for ce, te, se in zip(cond_emb, text_emb, speech_emb) | |
]) # (B, length, dim) | |
return embeds, len_cond | |
def forward( | |
self, | |
*, | |
t3_cond: T3Cond, | |
text_tokens: torch.LongTensor, | |
text_token_lens: torch.LongTensor, | |
speech_tokens: torch.LongTensor, | |
speech_token_lens: torch.LongTensor, | |
training=False, | |
): | |
_ensure_BOT_EOT(text_tokens, self.hp) | |
# prepare custom input embeds | |
embeds, len_cond = self.prepare_input_embeds( | |
t3_cond=t3_cond, | |
text_tokens=text_tokens, | |
speech_tokens=speech_tokens, | |
) | |
# backbone tranformer forward | |
tfmr_out = self.tfmr.forward( | |
input_ids=None, | |
# position_ids=position_ids, # TODO? ROPE should be fine? | |
inputs_embeds=embeds, | |
output_hidden_states=True, | |
return_dict=True, | |
use_cache=(not training), | |
) | |
hidden_states = tfmr_out.hidden_states[-1] # final tfmr layer output, (B, seq, dim) | |
# post-processing: splice out text and speech parts of hidden states | |
len_text = text_tokens.size(1) | |
len_speech = speech_tokens.size(1) | |
B, _, dim = hidden_states.shape | |
device, dtype = hidden_states.device, hidden_states.dtype | |
text_latents = torch.zeros(B, len_text, dim, dtype=dtype, device=device) | |
speech_latents = torch.zeros(B, len_speech, dim, dtype=dtype, device=device) | |
ttl, stl = text_token_lens, speech_token_lens | |
for i in range(B): | |
text_end = len_cond + ttl[i].item() | |
speech_start = len_cond + text_tokens.size(1) | |
speech_end = speech_start + stl[i].item() | |
text_latents[i, :ttl[i]] = hidden_states[i, len_cond:text_end] | |
speech_latents[i, :stl[i]] = hidden_states[i, speech_start:speech_end] | |
# logit projection | |
text_logits = self.text_head(text_latents) | |
speech_logits = self.speech_head(speech_latents) | |
return AttrDict( | |
text_logits=text_logits, | |
text_latents=text_latents, | |
speech_logits=speech_logits, | |
speech_latents=speech_latents, | |
hidden_states=hidden_states, | |
) | |
def loss( | |
self, | |
*, | |
t3_cond: T3Cond, | |
text_tokens: torch.LongTensor, | |
text_token_lens: torch.LongTensor, | |
speech_tokens: torch.LongTensor, | |
speech_token_lens: torch.LongTensor, | |
): | |
"training method" | |
len_text = text_tokens.size(1) | |
len_speech = speech_tokens.size(1) | |
assert len_text == text_token_lens.max() | |
assert len_speech == speech_token_lens.max() | |
out = self.forward( | |
t3_cond=t3_cond, | |
text_tokens=text_tokens, | |
text_token_lens=text_token_lens, | |
speech_tokens=speech_tokens, | |
speech_token_lens=speech_token_lens, | |
training=True, | |
) # (B, seq, vocab_size) | |
# Calc CCE losses | |
IGNORE_ID = -100 | |
device = out.text_logits.device | |
mask_text = torch.arange(len_text, device=device)[None] >= text_token_lens[:, None] # (B, len_text) | |
mask_speech = torch.arange(len_speech, device=device)[None] >= speech_token_lens[:, None] # (B, len_speech) | |
masked_text = text_tokens.masked_fill(mask_text, IGNORE_ID) | |
masked_speech = speech_tokens.masked_fill(mask_speech, IGNORE_ID) | |
loss_text = F.cross_entropy(out.text_logits, masked_text, ignore_index=IGNORE_ID) | |
loss_speech = F.cross_entropy(out.speech_logits, masked_speech, ignore_index=IGNORE_ID) | |
return loss_text, loss_speech | |
def inference( | |
self, | |
*, | |
t3_cond: T3Cond, | |
text_tokens: Tensor, | |
initial_speech_tokens: Optional[Tensor]=None, | |
# misc conditioning | |
prepend_prompt_speech_tokens: Optional[Tensor]=None, | |
# HF generate args | |
num_return_sequences=1, | |
max_new_tokens=None, | |
stop_on_eos=True, | |
do_sample=True, | |
temperature=0.8, | |
min_p=0.05, | |
top_p=1.00, | |
length_penalty=1.0, | |
repetition_penalty=1.2, | |
cfg_weight=0, | |
): | |
""" | |
Args: | |
text_tokens: a 1D (unbatched) or 2D (batched) tensor. | |
""" | |
# Validate / sanitize inputs | |
assert prepend_prompt_speech_tokens is None, "not implemented" | |
_ensure_BOT_EOT(text_tokens, self.hp) | |
text_tokens = torch.atleast_2d(text_tokens).to(dtype=torch.long, device=self.device) | |
# Default initial speech to a single start-of-speech token | |
if initial_speech_tokens is None: | |
initial_speech_tokens = self.hp.start_speech_token * torch.ones_like(text_tokens[:, :1]) | |
# Prepare custom input embeds | |
embeds, len_cond = self.prepare_input_embeds( | |
t3_cond=t3_cond, | |
text_tokens=text_tokens, | |
speech_tokens=initial_speech_tokens, | |
cfg_weight=cfg_weight, | |
) | |
# In order to use the standard HF generate method, we need to extend some methods to inject our custom logic | |
# Note the llama-specific logic. Other tfmr types can be added later. | |
self.compiled = False | |
# TODO? synchronize the expensive compile function | |
# with self.compile_lock: | |
if not self.compiled: | |
patched_model = T3HuggingfaceBackend( | |
config=self.cfg, | |
llama=self.tfmr, | |
speech_enc=self.speech_emb, | |
speech_head=self.speech_head, | |
alignment_stream_analyzer=None, | |
) | |
self.patched_model = patched_model | |
self.compiled = True | |
# # Run normal generate method, which calls our custom extended methods | |
# return self.patched_model.generate( | |
# inputs=initial_speech_tokens, | |
# decoder_cond=embeds, | |
# bos_token_id=self.hp.start_speech_token, | |
# eos_token_id=(self.hp.stop_speech_token if stop_on_eos else -1), | |
# pad_token_id=self.hp.stop_speech_token, | |
# max_new_tokens=max_new_tokens or self.hp.max_speech_tokens, | |
# num_return_sequences=num_return_sequences, | |
# temperature=temperature, | |
# min_p=min_p, | |
# length_penalty=length_penalty, | |
# repetition_penalty=repetition_penalty, | |
# do_sample=do_sample, | |
# # cache_implementation=None if not self.compiled else "static", | |
# ) | |
device = embeds.device | |
bos_token = torch.tensor([[self.hp.start_speech_token]], dtype=torch.long, device=device) | |
bos_embed = self.speech_emb(bos_token) # shape: (B, 1, embed_dim) | |
bos_embed = bos_embed + self.speech_pos_emb.get_fixed_embedding(0) | |
# batch_size=2 for CFG | |
bos_embed = torch.cat([bos_embed, bos_embed]) | |
# Combine condition and BOS token for the initial input if cfg_weight > 0 | |
if cfg_weight > 0: | |
inputs_embeds = torch.cat([embeds, bos_embed], dim=1) | |
else: | |
inputs_embeds = embeds | |
# Track generated token ids; start with the BOS token. | |
generated_ids = bos_token.clone() | |
predicted = [] # To store the predicted tokens | |
# Instantiate the logits processors. | |
min_p_warper = MinPLogitsWarper(min_p=min_p) | |
top_p_warper = TopPLogitsWarper(top_p=top_p) | |
repetition_penalty_processor = RepetitionPenaltyLogitsProcessor(penalty=float(repetition_penalty)) | |
# ---- Initial Forward Pass (no kv_cache yet) ---- | |
output = self.patched_model( | |
inputs_embeds=inputs_embeds, | |
past_key_values=None, | |
use_cache=True, | |
output_attentions=True, | |
output_hidden_states=True, | |
return_dict=True, | |
) | |
# Initialize kv_cache with the full context. | |
past = output.past_key_values | |
# ---- Generation Loop using kv_cache ---- | |
for i in tqdm(range(max_new_tokens), desc="Sampling", dynamic_ncols=True): | |
logits = output.logits[:, -1, :] | |
# CFG | |
if cfg_weight > 0.0: | |
logits_cond = logits[0:1] | |
logits_uncond = logits[1:2] | |
logits = logits_cond + cfg_weight * (logits_cond - logits_uncond) | |
logits = logits.squeeze(1) | |
# Apply temperature scaling. | |
if temperature != 1.0: | |
logits = logits / temperature | |
# Apply repetition penalty and top‑p filtering. | |
logits = repetition_penalty_processor(generated_ids, logits) | |
logits = min_p_warper(None, logits) | |
logits = top_p_warper(None, logits) | |
# Convert logits to probabilities and sample the next token. | |
probs = torch.softmax(logits, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) # shape: (B, 1) | |
predicted.append(next_token) | |
generated_ids = torch.cat([generated_ids, next_token], dim=1) | |
# Check for EOS token. | |
if next_token.view(-1) == self.hp.stop_speech_token: | |
break | |
# Get embedding for the new token. | |
next_token_embed = self.speech_emb(next_token) | |
next_token_embed = next_token_embed + self.speech_pos_emb.get_fixed_embedding(i + 1) | |
# For CFG | |
if cfg_weight > 0.0: | |
next_token_embed = torch.cat([next_token_embed, next_token_embed]) | |
# Forward pass with only the new token and the cached past. | |
output = self.patched_model( | |
inputs_embeds=next_token_embed, | |
past_key_values=past, | |
output_attentions=True, | |
output_hidden_states=True, | |
return_dict=True, | |
) | |
# Update the kv_cache. | |
past = output.past_key_values | |
# Concatenate all predicted tokens along the sequence dimension. | |
predicted_tokens = torch.cat(predicted, dim=1) # shape: (B, num_tokens) | |
return predicted_tokens | |