"""mel-spectrogram extraction in Matcha-TTS""" from librosa.filters import mel as librosa_mel_fn import torch import numpy as np # NOTE: they decalred these global vars mel_basis = {} hann_window = {} def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): return torch.log(torch.clamp(x, min=clip_val) * C) def spectral_normalize_torch(magnitudes): output = dynamic_range_compression_torch(magnitudes) return output """ feat_extractor: !name:matcha.utils.audio.mel_spectrogram n_fft: 1920 num_mels: 80 sampling_rate: 24000 hop_size: 480 win_size: 1920 fmin: 0 fmax: 8000 center: False """ def mel_spectrogram(y, n_fft=1920, num_mels=80, sampling_rate=24000, hop_size=480, win_size=1920, fmin=0, fmax=8000, center=False): """Copied from https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/utils/audio.py Set default values according to Cosyvoice's config. """ if isinstance(y, np.ndarray): y = torch.tensor(y).float() if len(y.shape) == 1: y = y[None, ] if torch.min(y) < -1.0: print("min value is ", torch.min(y)) if torch.max(y) > 1.0: print("max value is ", torch.max(y)) global mel_basis, hann_window # pylint: disable=global-statement,global-variable-not-assigned if f"{str(fmax)}_{str(y.device)}" not in mel_basis: mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device) hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) y = torch.nn.functional.pad( y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect" ) y = y.squeeze(1) spec = torch.view_as_real( torch.stft( y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True, ) ) spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec) spec = spectral_normalize_torch(spec) return spec