--- title: DDColor app_file: gradio_app.py sdk: gradio sdk_version: 5.21.0 --- # 🎨 DDColor [![arXiv](https://img.shields.io/badge/arXiv-2212.11613-b31b1b.svg)](https://arxiv.org/abs/2212.11613) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-FF8000)](https://huggingface.co/piddnad/DDColor-models) [![ModelScope demo](https://img.shields.io/badge/%F0%9F%91%BE%20ModelScope-Demo-8A2BE2)](https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary) [![Replicate](https://replicate.com/piddnad/ddcolor/badge)](https://replicate.com/piddnad/ddcolor) ![visitors](https://visitor-badge.laobi.icu/badge?page_id=piddnad/DDColor) Official PyTorch implementation of ICCV 2023 Paper "DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders". > Xiaoyang Kang, Tao Yang, Wenqi Ouyang, Peiran Ren, Lingzhi Li, Xuansong Xie > *DAMO Academy, Alibaba Group* 🪄 DDColor can provide vivid and natural colorization for historical black and white old photos.

🎲 It can even colorize/recolor landscapes from anime games, transforming your animated scenery into a realistic real-life style! (Image source: Genshin Impact)

## News - [2024-01-28] Support inference via 🤗 Hugging Face! Thanks @[Niels](https://github.com/NielsRogge) for the suggestion and example code and @[Skwara](https://github.com/Skwarson96) for fixing bug. - [2024-01-18] Add Replicate demo and API! Thanks @[Chenxi](https://github.com/chenxwh). - [2023-12-13] Release the DDColor-tiny pre-trained model! - [2023-09-07] Add the Model Zoo and release three pretrained models! - [2023-05-15] Code release for training and inference! - [2023-05-05] The online demo is available! ## Online Demo Try our online demos at [ModelScope](https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary) and [Replicate](https://replicate.com/piddnad/ddcolor). ## Methods *In short:* DDColor uses multi-scale visual features to optimize **learnable color tokens** (i.e. color queries) and achieves state-of-the-art performance on automatic image colorization.

## Installation ### Requirements - Python >= 3.7 - PyTorch >= 1.7 ### Installation with conda (recommended) ```sh conda create -n ddcolor python=3.9 conda activate ddcolor pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118 pip install -r requirements.txt # Install basicsr, only required for training python3 setup.py develop ``` ## Quick Start ### Inference Using Local Script (No `basicsr` Required) 1. Download the pretrained model: ```python from modelscope.hub.snapshot_download import snapshot_download model_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope') print('model assets saved to %s' % model_dir) ``` 2. Run inference with ```sh python infer.py --model_path ./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt --input ./assets/test_images ``` or ```sh sh scripts/inference.sh ``` ### Inference Using Hugging Face Load the model via Hugging Face Hub: ```python from infer_hf import DDColorHF ddcolor_paper_tiny = DDColorHF.from_pretrained("piddnad/ddcolor_paper_tiny") ddcolor_paper = DDColorHF.from_pretrained("piddnad/ddcolor_paper") ddcolor_modelscope = DDColorHF.from_pretrained("piddnad/ddcolor_modelscope") ddcolor_artistic = DDColorHF.from_pretrained("piddnad/ddcolor_artistic") ``` Check `infer_hf.py` for the details of the inference, or directly perform model inference by running: ```sh python infer_hf.py --model_name ddcolor_modelscope --input ./assets/test_images # model_name: [ddcolor_paper | ddcolor_modelscope | ddcolor_artistic | ddcolor_paper_tiny] ``` ### Inference Using ModelScope 1. Install modelscope: ```sh pip install modelscope ``` 2. Run inference: ```python import cv2 from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks img_colorization = pipeline(Tasks.image_colorization, model='damo/cv_ddcolor_image-colorization') result = img_colorization('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg') cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG]) ``` This code will automatically download the `ddcolor_modelscope` model (see [ModelZoo](#model-zoo)) and performs inference. The model file `pytorch_model.pt` can be found in the local path `~/.cache/modelscope/hub/damo`. ### Gradio Demo Install the gradio and other required libraries: ```sh pip install gradio gradio_imageslider timm ``` Then, you can run the demo with the following command: ```sh python gradio_app.py ``` ## Model Zoo We provide several different versions of pretrained models, please check out [Model Zoo](MODEL_ZOO.md). ## Train 1. Dataset Preparation: Download the [ImageNet](https://www.image-net.org/) dataset or create a custom dataset. Use this script to obtain the dataset list file: ```sh python data_list/get_meta_file.py ``` 2. Download the pretrained weights for [ConvNeXt](https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth) and [InceptionV3](https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth) and place them in the `pretrain` folder. 3. Specify 'meta_info_file' and other options in `options/train/train_ddcolor.yml`. 4. Start training: ```sh sh scripts/train.sh ``` ## ONNX export Support for ONNX model exports is available. 1. Install dependencies: ```sh pip install onnx==1.16.1 onnxruntime==1.19.2 onnxsim==0.4.36 ``` 2. Usage example: ```sh python export.py usage: export.py [-h] [--input_size INPUT_SIZE] [--batch_size BATCH_SIZE] --model_path MODEL_PATH [--model_size MODEL_SIZE] [--decoder_type DECODER_TYPE] [--export_path EXPORT_PATH] [--opset OPSET] ``` Demo of ONNX export using a `ddcolor_paper_tiny` model is available [here](notebooks/colorization_pipeline_onnxruntime.ipynb). ## Citation If our work is helpful for your research, please consider citing: ``` @inproceedings{kang2023ddcolor, title={DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders}, author={Kang, Xiaoyang and Yang, Tao and Ouyang, Wenqi and Ren, Peiran and Li, Lingzhi and Xie, Xuansong}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={328--338}, year={2023} } ``` ## Acknowledgments We thank the authors of BasicSR for the awesome training pipeline. > Xintao Wang, Ke Yu, Kelvin C.K. Chan, Chao Dong and Chen Change Loy. BasicSR: Open Source Image and Video Restoration Toolbox. https://github.com/xinntao/BasicSR, 2020. Some codes are adapted from [ColorFormer](https://github.com/jixiaozhong/ColorFormer), [BigColor](https://github.com/KIMGEONUNG/BigColor), [ConvNeXt](https://github.com/facebookresearch/ConvNeXt), [Mask2Former](https://github.com/facebookresearch/Mask2Former), and [DETR](https://github.com/facebookresearch/detr). Thanks for their excellent work!