File size: 12,666 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import itertools
import math
from typing import Callable, List, Set, Optional, Tuple, Union
from collections import defaultdict, Counter
import os
import shutil
import cv2
from PIL import Image
import numpy as np
import einops
import networkx as nx
from shapely.geometry import Polygon

import torch
import torch.nn as nn
import torch.nn.functional as F

from manga_ocr import MangaOcr

from .xpos_relative_position import XPOS

from .common import OfflineOCR
from .model_48px import OCR
from ..textline_merge import split_text_region
from ..utils import TextBlock, Quadrilateral, quadrilateral_can_merge_region, chunks
from ..utils.generic import AvgMeter
from ..utils.bubble import is_ignore

async def merge_bboxes(bboxes: List[Quadrilateral], width: int, height: int):
    # step 1: divide into multiple text region candidates
    G = nx.Graph()
    for i, box in enumerate(bboxes):
        G.add_node(i, box=box)
    for ((u, ubox), (v, vbox)) in itertools.combinations(enumerate(bboxes), 2):
        # if quadrilateral_can_merge_region_coarse(ubox, vbox):
        if quadrilateral_can_merge_region(ubox, vbox, aspect_ratio_tol=1.3, font_size_ratio_tol=2,
                                          char_gap_tolerance=1, char_gap_tolerance2=3):
            G.add_edge(u, v)

    # step 2: postprocess - further split each region
    region_indices: List[Set[int]] = []
    for node_set in nx.algorithms.components.connected_components(G):
         region_indices.extend(split_text_region(bboxes, node_set, width, height))

    # step 3: return regions
    merge_box = []
    merge_idx = []
    for node_set in region_indices:
    # for node_set in nx.algorithms.components.connected_components(G):
        nodes = list(node_set)
        txtlns: List[Quadrilateral] = np.array(bboxes)[nodes]

        # majority vote for direction
        dirs = [box.direction for box in txtlns]
        majority_dir_top_2 = Counter(dirs).most_common(2)
        if len(majority_dir_top_2) == 1 :
            majority_dir = majority_dir_top_2[0][0]
        elif majority_dir_top_2[0][1] == majority_dir_top_2[1][1] : # if top 2 have the same counts
            max_aspect_ratio = -100
            for box in txtlns :
                if box.aspect_ratio > max_aspect_ratio :
                    max_aspect_ratio = box.aspect_ratio
                    majority_dir = box.direction
                if 1.0 / box.aspect_ratio > max_aspect_ratio :
                    max_aspect_ratio = 1.0 / box.aspect_ratio
                    majority_dir = box.direction
        else :
            majority_dir = majority_dir_top_2[0][0]

        # sort textlines
        if majority_dir == 'h':
            nodes = sorted(nodes, key=lambda x: bboxes[x].centroid[1])
        elif majority_dir == 'v':
            nodes = sorted(nodes, key=lambda x: -bboxes[x].centroid[0])
        txtlns = np.array(bboxes)[nodes]
        # yield overall bbox and sorted indices
        merge_box.append(txtlns)
        merge_idx.append(nodes)
    
    return_box = []
    for bbox in merge_box:
        if len(bbox) == 1:
            return_box.append(bbox[0])
        else:
            prob = [q.prob for q in bbox]
            prob = sum(prob)/len(prob)
            base_box = bbox[0]
            for box in bbox[1:]:
                min_rect = np.array(Polygon([*base_box.pts, *box.pts]).minimum_rotated_rectangle.exterior.coords[:4])
                base_box = Quadrilateral(min_rect, '', prob)
            return_box.append(base_box)
    return return_box, merge_idx

class ModelMangaOCR(OfflineOCR):
    _MODEL_MAPPING = {
        'model': {
            'url': 'https://github.com/zyddnys/manga-image-translator/releases/download/beta-0.3/ocr_ar_48px.ckpt',
            'hash': '29daa46d080818bb4ab239a518a88338cbccff8f901bef8c9db191a7cb97671d',
        },
        'dict': {
            'url': 'https://github.com/zyddnys/manga-image-translator/releases/download/beta-0.3/alphabet-all-v7.txt',
            'hash': 'f5722368146aa0fbcc9f4726866e4efc3203318ebb66c811d8cbbe915576538a',
        },
    }

    def __init__(self, *args, **kwargs):
        os.makedirs(self.model_dir, exist_ok=True)
        if os.path.exists('ocr_ar_48px.ckpt'):
            shutil.move('ocr_ar_48px.ckpt', self._get_file_path('ocr_ar_48px.ckpt'))
        if os.path.exists('alphabet-all-v7.txt'):
            shutil.move('alphabet-all-v7.txt', self._get_file_path('alphabet-all-v7.txt'))
        super().__init__(*args, **kwargs)

    async def _load(self, device: str):
        with open(self._get_file_path('alphabet-all-v7.txt'), 'r', encoding = 'utf-8') as fp:
            dictionary = [s[:-1] for s in fp.readlines()]

        self.model = OCR(dictionary, 768)
        self.mocr = MangaOcr()
        sd = torch.load(self._get_file_path('ocr_ar_48px.ckpt'))
        self.model.load_state_dict(sd)
        self.model.eval()
        self.device = device
        if (device == 'cuda' or device == 'mps'):
            self.use_gpu = True
        else:
            self.use_gpu = False
        if self.use_gpu:
            self.model = self.model.to(device)


    async def _unload(self):
        del self.model
        del self.mocr
    
    async def _infer(self, image: np.ndarray, textlines: List[Quadrilateral], args: dict, verbose: bool = False, ignore_bubble: int = 0) -> List[TextBlock]:
        text_height = 48
        max_chunk_size = 16

        quadrilaterals = list(self._generate_text_direction(textlines))
        region_imgs = [q.get_transformed_region(image, d, text_height) for q, d in quadrilaterals]

        perm = range(len(region_imgs))
        is_quadrilaterals = False
        if len(quadrilaterals) > 0 and isinstance(quadrilaterals[0][0], Quadrilateral):
            perm = sorted(range(len(region_imgs)), key = lambda x: region_imgs[x].shape[1])
            is_quadrilaterals = True
        
        texts = {}
        if args['use_mocr_merge']:
            merged_textlines, merged_idx = await merge_bboxes(textlines, image.shape[1], image.shape[0])
            merged_quadrilaterals = list(self._generate_text_direction(merged_textlines))
        else:
            merged_idx = [[i] for i in range(len(region_imgs))]
            merged_quadrilaterals = quadrilaterals
        merged_region_imgs = []
        for q, d in merged_quadrilaterals:
            if d == 'h':
                merged_text_height = q.aabb.w
                merged_d = 'h'
            elif d == 'v':
                merged_text_height = q.aabb.h
                merged_d = 'h'
            merged_region_imgs.append(q.get_transformed_region(image, merged_d, merged_text_height))
        for idx in range(len(merged_region_imgs)):
            texts[idx] = self.mocr(Image.fromarray(merged_region_imgs[idx]))
            
        ix = 0
        out_regions = {}
        for indices in chunks(perm, max_chunk_size):
            N = len(indices)
            widths = [region_imgs[i].shape[1] for i in indices]
            max_width = 4 * (max(widths) + 7) // 4
            region = np.zeros((N, text_height, max_width, 3), dtype = np.uint8)
            idx_keys = []
            for i, idx in enumerate(indices):
                idx_keys.append(idx)
                W = region_imgs[idx].shape[1]
                tmp = region_imgs[idx]
                region[i, :, : W, :]=tmp
                if verbose:
                    os.makedirs('result/ocrs/', exist_ok=True)
                    if quadrilaterals[idx][1] == 'v':
                        cv2.imwrite(f'result/ocrs/{ix}.png', cv2.rotate(cv2.cvtColor(region[i, :, :, :], cv2.COLOR_RGB2BGR), cv2.ROTATE_90_CLOCKWISE))
                    else:
                        cv2.imwrite(f'result/ocrs/{ix}.png', cv2.cvtColor(region[i, :, :, :], cv2.COLOR_RGB2BGR))
                ix += 1
            image_tensor = (torch.from_numpy(region).float() - 127.5) / 127.5
            image_tensor = einops.rearrange(image_tensor, 'N H W C -> N C H W')
            if self.use_gpu:
                image_tensor = image_tensor.to(self.device)
            with torch.no_grad():
                ret = self.model.infer_beam_batch(image_tensor, widths, beams_k = 5, max_seq_length = 255)
            for i, (pred_chars_index, prob, fg_pred, bg_pred, fg_ind_pred, bg_ind_pred) in enumerate(ret):
                if prob < 0.2:
                    continue
                has_fg = (fg_ind_pred[:, 1] > fg_ind_pred[:, 0])
                has_bg = (bg_ind_pred[:, 1] > bg_ind_pred[:, 0])
                fr = AvgMeter()
                fg = AvgMeter()
                fb = AvgMeter()
                br = AvgMeter()
                bg = AvgMeter()
                bb = AvgMeter()
                for chid, c_fg, c_bg, h_fg, h_bg in zip(pred_chars_index, fg_pred, bg_pred, has_fg, has_bg) :
                    ch = self.model.dictionary[chid]
                    if ch == '<S>':
                        continue
                    if ch == '</S>':
                        break
                    if h_fg.item() :
                        fr(int(c_fg[0] * 255))
                        fg(int(c_fg[1] * 255))
                        fb(int(c_fg[2] * 255))
                    if h_bg.item() :
                        br(int(c_bg[0] * 255))
                        bg(int(c_bg[1] * 255))
                        bb(int(c_bg[2] * 255))
                    else :
                        br(int(c_fg[0] * 255))
                        bg(int(c_fg[1] * 255))
                        bb(int(c_fg[2] * 255))
                fr = min(max(int(fr()), 0), 255)
                fg = min(max(int(fg()), 0), 255)
                fb = min(max(int(fb()), 0), 255)
                br = min(max(int(br()), 0), 255)
                bg = min(max(int(bg()), 0), 255)
                bb = min(max(int(bb()), 0), 255)
                cur_region = quadrilaterals[indices[i]][0]
                if isinstance(cur_region, Quadrilateral):
                    cur_region.prob = prob
                    cur_region.fg_r = fr
                    cur_region.fg_g = fg
                    cur_region.fg_b = fb
                    cur_region.bg_r = br
                    cur_region.bg_g = bg
                    cur_region.bg_b = bb
                else:
                    cur_region.update_font_colors(np.array([fr, fg, fb]), np.array([br, bg, bb]))

                out_regions[idx_keys[i]] = cur_region
                
        output_regions = []
        for i, nodes in enumerate(merged_idx):
            total_logprobs = 0
            total_area = 0
            fg_r = []
            fg_g = []
            fg_b = []
            bg_r = []
            bg_g = []
            bg_b = []
            
            for idx in nodes:
                if idx not in out_regions:
                    continue
                    
                total_logprobs += np.log(out_regions[idx].prob) * out_regions[idx].area
                total_area += out_regions[idx].area
                fg_r.append(out_regions[idx].fg_r)
                fg_g.append(out_regions[idx].fg_g)
                fg_b.append(out_regions[idx].fg_b)
                bg_r.append(out_regions[idx].bg_r)
                bg_g.append(out_regions[idx].bg_g)
                bg_b.append(out_regions[idx].bg_b)
                
            total_logprobs /= total_area
            prob = np.exp(total_logprobs)
            fr = round(np.mean(fg_r))
            fg = round(np.mean(fg_g))
            fb = round(np.mean(fg_b))
            br = round(np.mean(bg_r))
            bg = round(np.mean(bg_g))
            bb = round(np.mean(bg_b))
            
            txt = texts[i]
            self.logger.info(f'prob: {prob} {txt} fg: ({fr}, {fg}, {fb}) bg: ({br}, {bg}, {bb})')
            cur_region = merged_quadrilaterals[i][0]
            if isinstance(cur_region, Quadrilateral):
                cur_region.text = txt
                cur_region.prob = prob
                cur_region.fg_r = fr
                cur_region.fg_g = fg
                cur_region.fg_b = fb
                cur_region.bg_r = br
                cur_region.bg_g = bg
                cur_region.bg_b = bb
            else:
                cur_region.text.append(txt)
                cur_region.update_font_colors(np.array([fr, fg, fb]), np.array([br, bg, bb]))
            output_regions.append(cur_region)

        if is_quadrilaterals:
            return output_regions
        return textlines