File size: 5,810 Bytes
2e82449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from modules_forge.supported_preprocessor import PreprocessorClipVision, Preprocessor, PreprocessorParameter
from modules_forge.shared import add_supported_preprocessor
from modules_forge.utils import numpy_to_pytorch
from modules_forge.shared import add_supported_control_model
from modules_forge.supported_controlnet import ControlModelPatcher
from lib_ipadapter.IPAdapterPlus import IPAdapterApply, InsightFaceLoader
from pathlib import Path


opIPAdapterApply = IPAdapterApply().apply_ipadapter
opInsightFaceLoader = InsightFaceLoader().load_insight_face


class PreprocessorClipVisionForIPAdapter(PreprocessorClipVision):
    def __init__(self, name, url, filename):
        super().__init__(name, url, filename)
        self.tags = ['IP-Adapter']
        self.model_filename_filters = ['IP-Adapter', 'IP_Adapter']
        self.sorting_priority = 20

    def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs):
        cond = dict(
            clip_vision=self.load_clipvision(),
            image=numpy_to_pytorch(input_image),
            weight_type="original",
            noise=0.0,
            embeds=None,
            unfold_batch=False,
        )
        return cond


class PreprocessorClipVisionWithInsightFaceForIPAdapter(PreprocessorClipVisionForIPAdapter):
    def __init__(self, name, url, filename):
        super().__init__(name, url, filename)
        self.cached_insightface = None

    def load_insightface(self):
        if self.cached_insightface is None:
            self.cached_insightface = opInsightFaceLoader()[0]
        return self.cached_insightface

    def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs):
        cond = dict(
            clip_vision=self.load_clipvision(),
            insightface=self.load_insightface(),
            image=numpy_to_pytorch(input_image),
            weight_type="original",
            noise=0.0,
            embeds=None,
            unfold_batch=False,
        )
        return cond


class PreprocessorInsightFaceForInstantID(Preprocessor):
    def __init__(self, name):
        super().__init__()
        self.name = name
        self.tags = ['Instant-ID']
        self.model_filename_filters = ['Instant-ID', 'Instant_ID']
        self.sorting_priority = 20
        self.slider_resolution = PreprocessorParameter(visible=False)
        self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab = False
        self.show_control_mode = False
        self.sorting_priority = 10
        self.cached_insightface = None

    def load_insightface(self):
        if self.cached_insightface is None:
            self.cached_insightface = opInsightFaceLoader(name='antelopev2')[0]
        return self.cached_insightface

    def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs):
        cond = dict(
            clip_vision=None,
            insightface=self.load_insightface(),
            image=numpy_to_pytorch(input_image),
            weight_type="original",
            noise=0.0,
            embeds=None,
            unfold_batch=False,
            instant_id=True
        )
        return cond


add_supported_preprocessor(PreprocessorClipVisionForIPAdapter(
    name='CLIP-ViT-H (IPAdapter)',
    url='https://huggingface.co/h94/IP-Adapter/resolve/main/models/image_encoder/model.safetensors',
    filename='CLIP-ViT-H-14.safetensors'
))

add_supported_preprocessor(PreprocessorClipVisionForIPAdapter(
    name='CLIP-ViT-bigG (IPAdapter)',
    url='https://huggingface.co/h94/IP-Adapter/resolve/main/sdxl_models/image_encoder/model.safetensors',
    filename='CLIP-ViT-bigG.safetensors'
))

add_supported_preprocessor(PreprocessorClipVisionWithInsightFaceForIPAdapter(
    name='InsightFace+CLIP-H (IPAdapter)',
    url='https://huggingface.co/h94/IP-Adapter/resolve/main/models/image_encoder/model.safetensors',
    filename='CLIP-ViT-H-14.safetensors'
))

add_supported_preprocessor(PreprocessorInsightFaceForInstantID(
    name='InsightFace (InstantID)',
))


class IPAdapterPatcher(ControlModelPatcher):
    @staticmethod
    def try_build_from_state_dict(state_dict, ckpt_path):
        model = state_dict

        if ckpt_path.lower().endswith(".safetensors"):
            st_model = {"image_proj": {}, "ip_adapter": {}}
            for key in model.keys():
                if key.startswith("image_proj."):
                    st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
                elif key.startswith("ip_adapter."):
                    st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
            model = st_model

        if "ip_adapter" not in model.keys() or len(model["ip_adapter"]) == 0:
            return None

        o = IPAdapterPatcher(model)

        model_filename = Path(ckpt_path).name.lower()
        if 'v2' in model_filename:
            o.faceid_v2 = True
            o.weight_v2 = True

        return o

    def __init__(self, state_dict):
        super().__init__()
        self.ip_adapter = state_dict
        self.faceid_v2 = False
        self.weight_v2 = False
        return

    def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
        unet = process.sd_model.forge_objects.unet

        unet = opIPAdapterApply(
            ipadapter=self.ip_adapter,
            model=unet,
            weight=self.strength,
            start_at=self.start_percent,
            end_at=self.end_percent,
            faceid_v2=self.faceid_v2,
            weight_v2=self.weight_v2,
            attn_mask=mask.squeeze(1) if mask is not None else None,
            **cond,
        )[0]

        process.sd_model.forge_objects.unet = unet
        return


add_supported_control_model(IPAdapterPatcher)