import torch import gradio as gr from modules import scripts def Fourier_filter(x, threshold, scale): # FFT x_freq = torch.fft.fftn(x.float(), dim=(-2, -1)) x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1)) B, C, H, W = x_freq.shape mask = torch.ones((B, C, H, W), device=x.device) crow, ccol = H // 2, W // 2 mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale x_freq = x_freq * mask # IFFT x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1)) x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real return x_filtered.to(x.dtype) class FreeU: def patch(self, model, b1, b2, s1, s2): model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} def output_block_patch(h, hsp, transformer_options): scale = scale_dict.get(h.shape[1], None) if scale is not None: h[:, :h.shape[1] // 2] = h[:, :h.shape[1] // 2] * scale[0] if hsp.device not in on_cpu_devices: try: hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) except: print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.") on_cpu_devices[hsp.device] = True hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) else: hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) return h, hsp m = model.clone() m.set_model_output_block_patch(output_block_patch) return (m,) class FreeU_V2: def patch(self, model, b1, b2, s1, s2): model_channels = model.model.diffusion_model.config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} def output_block_patch(h, hsp, transformer_options): scale = scale_dict.get(h.shape[1], None) if scale is not None: hidden_mean = h.mean(1).unsqueeze(1) B = hidden_mean.shape[0] hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) h[:, :h.shape[1] // 2] = h[:, :h.shape[1] // 2] * ((scale[0] - 1) * hidden_mean + 1) if hsp.device not in on_cpu_devices: try: hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) except: print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.") on_cpu_devices[hsp.device] = True hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) else: hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) return h, hsp m = model.clone() m.set_model_output_block_patch(output_block_patch) return (m,) opFreeU_V2 = FreeU_V2() class FreeUForForge(scripts.Script): sorting_priority = 12 def title(self): return "FreeU Integrated" def show(self, is_img2img): # make this extension visible in both txt2img and img2img tab. return scripts.AlwaysVisible def ui(self, *args, **kwargs): with gr.Accordion(open=False, label=self.title(), elem_id="extensions-freeu", elem_classes=["extensions-freeu"]): freeu_enabled = gr.Checkbox(label='Enabled', value=False) freeu_b1 = gr.Slider(label='B1', minimum=0, maximum=2, step=0.01, value=1.01) freeu_b2 = gr.Slider(label='B2', minimum=0, maximum=2, step=0.01, value=1.02) freeu_s1 = gr.Slider(label='S1', minimum=0, maximum=4, step=0.01, value=0.99) freeu_s2 = gr.Slider(label='S2', minimum=0, maximum=4, step=0.01, value=0.95) return freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2 def process_before_every_sampling(self, p, *script_args, **kwargs): # This will be called before every sampling. # If you use highres fix, this will be called twice. freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2 = script_args if not freeu_enabled: return unet = p.sd_model.forge_objects.unet # unet = set_freeu_v2_patch(unet, freeu_b1, freeu_b2, freeu_s1, freeu_s2) unet = opFreeU_V2.patch(unet, freeu_b1, freeu_b2, freeu_s1, freeu_s2)[0] p.sd_model.forge_objects.unet = unet # Below codes will add some logs to the texts below the image outputs on UI. # The extra_generation_params does not influence results. p.extra_generation_params.update(dict( freeu_enabled=freeu_enabled, freeu_b1=freeu_b1, freeu_b2=freeu_b2, freeu_s1=freeu_s1, freeu_s2=freeu_s2, )) return