Dan Mo
Add script to generate and save embeddings for models
cfb0d15
raw
history blame
6.61 kB
"""
Main application file for the Emoji Mashup app.
This module handles the Gradio interface and application setup.
"""
import gradio as gr
from utils import logger
from emoji_processor import EmojiProcessor
from config import EMBEDDING_MODELS
class EmojiMashupApp:
def __init__(self):
"""Initialize the Gradio application."""
logger.info("Initializing Emoji Mashup App")
self.processor = EmojiProcessor(model_key="mpnet", use_cached_embeddings=True) # Default to mpnet
self.processor.load_emoji_dictionaries()
def create_model_dropdown_choices(self):
"""Create formatted choices for the model dropdown.
Returns:
List of formatted model choices
"""
return [
f"{key} ({info['size']}) - {info['notes']}"
for key, info in EMBEDDING_MODELS.items()
]
def handle_model_change(self, dropdown_value, use_cached_embeddings):
"""Handle model selection change from dropdown.
Args:
dropdown_value: Selected value from dropdown
use_cached_embeddings: Whether to use cached embeddings
Returns:
Status message about model change
"""
# Extract model key from dropdown value (first word before space)
model_key = dropdown_value.split()[0] if dropdown_value else "mpnet"
# Update processor cache setting
self.processor.use_cached_embeddings = use_cached_embeddings
if model_key in EMBEDDING_MODELS:
success = self.processor.switch_model(model_key)
if success:
cache_status = "using cached embeddings" if use_cached_embeddings else "computing fresh embeddings"
return f"Switched to {model_key} model ({cache_status}): {EMBEDDING_MODELS[model_key]['notes']}"
else:
return f"Failed to switch to {model_key} model"
else:
return f"Unknown model: {model_key}"
def process_with_model(self, model_selection, text, use_cached_embeddings):
"""Process text with selected model.
Args:
model_selection: Selected model from dropdown
text: User input text
use_cached_embeddings: Whether to use cached embeddings
Returns:
Tuple of (emotion emoji, event emoji, mashup image)
"""
# Extract model key from dropdown value (first word before space)
model_key = model_selection.split()[0] if model_selection else "mpnet"
# Update processor cache setting
self.processor.use_cached_embeddings = use_cached_embeddings
if model_key in EMBEDDING_MODELS:
self.processor.switch_model(model_key)
# Process text with current model
return self.processor.sentence_to_emojis(text)
def create_interface(self):
"""Create and configure the Gradio interface.
Returns:
Gradio Interface object
"""
with gr.Blocks(title="Sentence β†’ Emoji Mashup") as interface:
gr.Markdown("# Sentence β†’ Emoji Mashup")
gr.Markdown("Get the top emotion and event emoji from your sentence, and view the mashup!")
with gr.Row():
with gr.Column(scale=3):
# Model selection dropdown
model_dropdown = gr.Dropdown(
choices=self.create_model_dropdown_choices(),
value=self.create_model_dropdown_choices()[0], # Default to first model (mpnet)
label="Embedding Model",
info="Select the model used for text-emoji matching"
)
# Cache toggle
cache_toggle = gr.Checkbox(
label="Use cached embeddings",
value=True,
info="When enabled, embeddings will be saved to and loaded from disk"
)
# Text input
text_input = gr.Textbox(
lines=2,
placeholder="Type a sentence...",
label="Your message"
)
# Process button
submit_btn = gr.Button("Generate Emoji Mashup", variant="primary")
with gr.Column(scale=2):
# Model info display
model_info = gr.Textbox(
value=f"Using mpnet model (using cached embeddings): {EMBEDDING_MODELS['mpnet']['notes']}",
label="Model Info",
interactive=False
)
# Output displays
emotion_out = gr.Text(label="Top Emotion Emoji")
event_out = gr.Text(label="Top Event Emoji")
mashup_out = gr.Image(label="Mashup Emoji")
# Set up event handlers
model_dropdown.change(
fn=self.handle_model_change,
inputs=[model_dropdown, cache_toggle],
outputs=[model_info]
)
cache_toggle.change(
fn=self.handle_model_change,
inputs=[model_dropdown, cache_toggle],
outputs=[model_info]
)
submit_btn.click(
fn=self.process_with_model,
inputs=[model_dropdown, text_input, cache_toggle],
outputs=[emotion_out, event_out, mashup_out]
)
# Examples
gr.Examples(
examples=[
["I feel so happy today!"],
["I'm really angry right now"],
["Feeling tired after a long day"]
],
inputs=text_input
)
return interface
def run(self, share=True):
"""Launch the Gradio application.
Args:
share: Whether to create a public sharing link
"""
logger.info("Starting Emoji Mashup App")
interface = self.create_interface()
interface.launch(share=share)
# Main entry point
if __name__ == "__main__":
app = EmojiMashupApp()
app.run(share=True)