Spaces:
Sleeping
Sleeping
Dan Mo
commited on
Commit
·
975f207
1
Parent(s):
712ecb4
Add comprehensive technical reference documentation for the Feelings to Emoji application
Browse files- REFERENCE.md +131 -0
REFERENCE.md
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Feelings to Emoji: Technical Reference
|
2 |
+
|
3 |
+
This document provides technical details about the implementation of the Feelings to Emoji application.
|
4 |
+
|
5 |
+
## Project Structure
|
6 |
+
|
7 |
+
The application is organized into several Python modules:
|
8 |
+
|
9 |
+
- `app.py` - Main application file with Gradio interface
|
10 |
+
- `emoji_processor.py` - Core processing logic for emoji matching
|
11 |
+
- `config.py` - Configuration settings
|
12 |
+
- `utils.py` - Utility functions
|
13 |
+
- `generate_embeddings.py` - Standalone tool to pre-generate embeddings
|
14 |
+
|
15 |
+
## Embedding Models
|
16 |
+
|
17 |
+
The system uses the following sentence embedding models from the Sentence Transformers library:
|
18 |
+
|
19 |
+
| Model Key | Model ID | Size | Description |
|
20 |
+
|-----------|----------|------|-------------|
|
21 |
+
| mpnet | all-mpnet-base-v2 | 110M | Balanced, great general-purpose model |
|
22 |
+
| gte | thenlper/gte-large | 335M | Context-rich, good for emotion & nuance |
|
23 |
+
| bge | BAAI/bge-large-en-v1.5 | 350M | Tuned for ranking & high-precision similarity |
|
24 |
+
|
25 |
+
## Emoji Matching Algorithm
|
26 |
+
|
27 |
+
The application uses cosine similarity between sentence embeddings to match text with emojis:
|
28 |
+
|
29 |
+
1. For each emoji category (emotion and event):
|
30 |
+
- Embed descriptions using the selected model
|
31 |
+
- Calculate cosine similarity between the input text embedding and each emoji description embedding
|
32 |
+
- Return the emoji with the highest similarity score
|
33 |
+
|
34 |
+
2. The embeddings are pre-computed and cached to improve performance:
|
35 |
+
- Stored as pickle files in the `embeddings/` directory
|
36 |
+
- Generated using `generate_embeddings.py`
|
37 |
+
- Loaded at startup to minimize processing time
|
38 |
+
|
39 |
+
## Module Reference
|
40 |
+
|
41 |
+
### `config.py`
|
42 |
+
|
43 |
+
Contains configuration settings including:
|
44 |
+
|
45 |
+
- `CONFIG`: Dictionary with basic application settings (model name, file paths, etc.)
|
46 |
+
- `EMBEDDING_MODELS`: Dictionary defining the available embedding models
|
47 |
+
|
48 |
+
### `utils.py`
|
49 |
+
|
50 |
+
Utility functions including:
|
51 |
+
|
52 |
+
- `setup_logging()`: Configures application logging
|
53 |
+
- `kitchen_txt_to_dict(filepath)`: Parses emoji dictionary files
|
54 |
+
- `save_embeddings_to_pickle(embeddings, filepath)`: Saves embeddings to pickle files
|
55 |
+
- `load_embeddings_from_pickle(filepath)`: Loads embeddings from pickle files
|
56 |
+
- `get_embeddings_pickle_path(model_id, emoji_type)`: Generates consistent paths for embedding files
|
57 |
+
|
58 |
+
### `emoji_processor.py`
|
59 |
+
|
60 |
+
Core processing logic:
|
61 |
+
|
62 |
+
- `EmojiProcessor`: Main class for emoji matching and processing
|
63 |
+
- `__init__(model_name=None, model_key=None, use_cached_embeddings=True)`: Initializes the processor with a specific model
|
64 |
+
- `load_emoji_dictionaries(emotion_file, item_file)`: Loads emoji dictionaries from text files
|
65 |
+
- `switch_model(model_key)`: Switches to a different embedding model
|
66 |
+
- `sentence_to_emojis(sentence)`: Processes text to find matching emojis and generate mashup
|
67 |
+
- `find_top_emojis(embedding, emoji_embeddings, top_n=1)`: Finds top matching emojis using cosine similarity
|
68 |
+
|
69 |
+
### `app.py`
|
70 |
+
|
71 |
+
Gradio interface:
|
72 |
+
|
73 |
+
- `EmojiMashupApp`: Main application class
|
74 |
+
- `create_interface()`: Creates the Gradio interface
|
75 |
+
- `process_with_model(model_selection, text, use_cached_embeddings)`: Processes text with selected model
|
76 |
+
- `get_random_example()`: Gets a random example sentence for demonstration
|
77 |
+
|
78 |
+
### `generate_embeddings.py`
|
79 |
+
|
80 |
+
Standalone utility to pre-generate embeddings:
|
81 |
+
|
82 |
+
- `generate_embeddings_for_model(model_key, model_info)`: Generates embeddings for a specific model
|
83 |
+
- `main()`: Main function that processes all models and saves embeddings
|
84 |
+
|
85 |
+
## Emoji Data Files
|
86 |
+
|
87 |
+
- `google-emoji-kitchen-emotion.txt`: Emotion emojis with descriptions
|
88 |
+
- `google-emoji-kitchen-item.txt`: Event/object emojis with descriptions
|
89 |
+
- `google-emoji-kitchen-compatible.txt`: Compatibility information for emoji combinations
|
90 |
+
|
91 |
+
## Embedding Cache Structure
|
92 |
+
|
93 |
+
The `embeddings/` directory contains pre-generated embeddings in pickle format:
|
94 |
+
|
95 |
+
- `[model_id]_emotion.pkl`: Embeddings for emotion emojis
|
96 |
+
- `[model_id]_event.pkl`: Embeddings for event/object emojis
|
97 |
+
|
98 |
+
## API Usage Examples
|
99 |
+
|
100 |
+
### Using the EmojiProcessor Directly
|
101 |
+
|
102 |
+
```python
|
103 |
+
from emoji_processor import EmojiProcessor
|
104 |
+
|
105 |
+
# Initialize with default model (mpnet)
|
106 |
+
processor = EmojiProcessor()
|
107 |
+
processor.load_emoji_dictionaries()
|
108 |
+
|
109 |
+
# Process a sentence
|
110 |
+
emotion, event, image = processor.sentence_to_emojis("I'm feeling happy today!")
|
111 |
+
print(f"Emotion emoji: {emotion}")
|
112 |
+
print(f"Event emoji: {event}")
|
113 |
+
# image contains the PIL Image object of the mashup
|
114 |
+
```
|
115 |
+
|
116 |
+
### Switching Models
|
117 |
+
|
118 |
+
```python
|
119 |
+
# Switch to a different model
|
120 |
+
processor.switch_model("gte")
|
121 |
+
|
122 |
+
# Process with the new model
|
123 |
+
emotion, event, image = processor.sentence_to_emojis("I'm feeling anxious about tomorrow.")
|
124 |
+
```
|
125 |
+
|
126 |
+
## Performance Considerations
|
127 |
+
|
128 |
+
- Embedding generation is computationally intensive but only happens once per model
|
129 |
+
- Using cached embeddings significantly improves response time
|
130 |
+
- Larger models (GTE, BGE) may provide better accuracy but require more resources
|
131 |
+
- The MPNet model offers a good balance of performance and accuracy for most use cases
|