File size: 19,721 Bytes
64772a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
from dataclasses import dataclass
from enum import Enum
from typing import (
    Any,
    List,
    Dict,
    Mapping,
    Optional,
    Union,
)

# Import Literal with Python 3.7 fallback
from typing_extensions import Literal

from aleph_alpha_client import Text

from aleph_alpha_client.prompt import ControlTokenOverlap, Image, Prompt, PromptItem


class ExplanationPostprocessing(Enum):
    """

    Available types of explanation postprocessing.



    Square:

        Square each score

    Absolute:

        Take the absolute value of each score

    """

    Square = "square"
    Absolute = "absolute"

    def to_json(self) -> str:
        return self.value


@dataclass(frozen=True)
class CustomGranularity:
    """

    Allows for passing a custom delimiter to determine the granularity to

    to explain the prompt by. The text of the prompt will be split by the

    delimiter you provide.



    Parameters:

        delimiter (str, required):

            String to split the text in the prompt by for generating

            explanations for your prompt.

    """

    delimiter: str

    def to_json(self) -> Mapping[str, Any]:
        return {"type": "custom", "delimiter": self.delimiter}


class PromptGranularity(Enum):
    Token = "token"
    Word = "word"
    Sentence = "sentence"
    Paragraph = "paragraph"

    def to_json(self) -> Mapping[str, Any]:
        return {"type": self.value}


def prompt_granularity_to_json(

    prompt_granularity: Union[PromptGranularity, str, CustomGranularity],

) -> Mapping[str, Any]:
    # we allow str for backwards compatibility
    # This was previously possible because PromptGranularity was not an Enum
    if isinstance(prompt_granularity, str):
        return {"type": prompt_granularity}

    return prompt_granularity.to_json()


class TargetGranularity(Enum):
    """

    How many explanations should be returned in the output.



    Complete:

        Return one explanation for the entire target. Helpful in many cases to determine which parts of the prompt contribute overall to the given completion.

    Token:

        Return one explanation for each token in the target.

    """

    Complete = "complete"
    Token = "token"

    def to_json(self) -> str:
        return self.value


@dataclass(frozen=True)
class ExplanationRequest:
    """

    Describes an Explanation request you want to make agains the API.



    Parameters:

        prompt (Prompt, required)

            Prompt you want to generate explanations for a target completion.

        target (str, required)

            The completion string to be explained based on model probabilities.

        contextual_control_threshold (float, default None)

            If set to None, attention control parameters only apply to those tokens that have

            explicitly been set in the request.

            If set to a non-None value, we apply the control parameters to similar tokens as well.

            Controls that have been applied to one token will then be applied to all other tokens

            that have at least the similarity score defined by this parameter.

            The similarity score is the cosine similarity of token embeddings.

        control_factor (float, default None):

            The amount to adjust model attention by.

            For Explanation, you want to supress attention, and the API will default to 0.1.

            Values between 0 and 1 will supress attention.

            A value of 1 will have no effect.

            Values above 1 will increase attention.

        control_token_overlap (ControlTokenOverlap, default None)

            What to do if a control partially overlaps with a text or image token.

            If set to "partial", the factor will be adjusted proportionally with the amount

            of the token it overlaps. So a factor of 2.0 of a control that only covers 2 of

            4 token characters, would be adjusted to 1.5.

            If set to "complete", the full factor will be applied as long as the control

            overlaps with the token at all.

        control_log_additive (bool, default None)

            True: apply control by adding the log(control_factor) to attention scores.

            False: apply control by (attention_scores - - attention_scores.min(-1)) * control_factor

            If None, the API will default to True

        prompt_granularity (Union[PromptGranularity, str, CustomGranularity], default None)

            At which granularity should the target be explained in terms of the prompt.

            If you choose, for example, "sentence" then we report the importance score of each

            sentence in the prompt towards generating the target output.



            If you do not choose a granularity then we will try to find the granularity that

            brings you closest to around 30 explanations. For large documents, this would likely

            be sentences. For short prompts this might be individual words or even tokens.



            If you choose a custom granularity then you must provide a custom delimiter. We then

            split your prompt by that delimiter. This might be helpful if you are using few-shot

            prompts that contain stop sequences.



            We currently support providing the prompt_granularity as PromptGranularity (recommended)

            or CustomGranularity (if needed) or str (deprecated). Note that supplying plain strings

            only makes sense if you choose one of the values defined in the PromptGranularity enum.

            All other strings will be rejected by the API. In future versions we might cut support

            for plain str values.



            For image prompt items, the granularities determine into how many tiles we divide

            the image for the explanation.

            "token" -> 12x12

            "word" -> 6x6

            "sentence" -> 3x3

            "paragraph" -> 1

        target_granularity (TargetGranularity, default None)

            How many explanations should be returned in the output.



            "complete" -> Return one explanation for the entire target. Helpful in many cases to determine which parts of the prompt contribute overall to the given completion.

            "token" -> Return one explanation for each token in the target.



            If None, API will default to "complete"

        postprocessing (ExplanationPostprocessing, default None)

            Optionally apply postprocessing to the difference in cross entropy scores for each token.

            "none": Apply no postprocessing.

            "absolute": Return the absolute value of each value.

            "square": Square each value

        normalize (bool, default None)

            Return normalized scores. Minimum score becomes 0 and maximum score becomes 1. Applied after any postprocessing

    """

    prompt: Prompt
    target: str
    contextual_control_threshold: Optional[float] = None
    control_factor: Optional[float] = None
    control_token_overlap: Optional[ControlTokenOverlap] = None
    control_log_additive: Optional[bool] = None
    prompt_granularity: Optional[
        Union[PromptGranularity, str, CustomGranularity]
    ] = None
    target_granularity: Optional[TargetGranularity] = None
    postprocessing: Optional[ExplanationPostprocessing] = None
    normalize: Optional[bool] = None

    def to_json(self) -> Mapping[str, Any]:
        payload: Dict[str, Any] = {
            "prompt": self.prompt.to_json(),
            "target": self.target,
        }
        if self.contextual_control_threshold is not None:
            payload["contextual_control_threshold"] = self.contextual_control_threshold
        if self.control_token_overlap is not None:
            payload["control_token_overlap"] = self.control_token_overlap.to_json()
        if self.postprocessing is not None:
            payload["postprocessing"] = self.postprocessing.to_json()
        if self.control_log_additive is not None:
            payload["control_log_additive"] = self.control_log_additive
        if self.prompt_granularity is not None:
            payload["prompt_granularity"] = prompt_granularity_to_json(
                self.prompt_granularity
            )
        if self.target_granularity is not None:
            payload["target_granularity"] = self.target_granularity.to_json()
        if self.postprocessing is not None:
            payload["postprocessing"] = self.postprocessing.to_json()
        if self.normalize is not None:
            payload["normalize"] = self.normalize
        if self.control_factor is not None:
            payload["control_factor"] = self.control_factor

        return payload


@dataclass(frozen=True)
class TextScore:
    start: int
    length: int
    score: float

    @staticmethod
    def from_json(score: Any) -> "TextScore":
        return TextScore(
            start=score["start"],
            length=score["length"],
            score=score["score"],
        )


@dataclass(frozen=True)
class TextScoreWithRaw:
    start: int
    length: int
    score: float
    text: str

    @staticmethod
    def from_text_score(score: TextScore, prompt: Text) -> "TextScoreWithRaw":
        return TextScoreWithRaw(
            start=score.start,
            length=score.length,
            score=score.score,
            text=prompt.text[score.start : score.start + score.length],
        )


@dataclass(frozen=True)
class ImageScore:
    left: float
    top: float
    width: float
    height: float
    score: float

    @staticmethod
    def from_json(score: Any) -> "ImageScore":
        return ImageScore(
            left=score["rect"]["left"],
            top=score["rect"]["top"],
            width=score["rect"]["width"],
            height=score["rect"]["height"],
            score=score["score"],
        )


@dataclass(frozen=True)
class TargetScore:
    start: int
    length: int
    score: float

    @staticmethod
    def from_json(score: Any) -> "TargetScore":
        return TargetScore(
            start=score["start"],
            length=score["length"],
            score=score["score"],
        )


@dataclass(frozen=True)
class TargetScoreWithRaw:
    start: int
    length: int
    score: float
    text: str

    @staticmethod
    def from_target_score(score: TargetScore, target: str) -> "TargetScoreWithRaw":
        return TargetScoreWithRaw(
            start=score.start,
            length=score.length,
            score=score.score,
            text=target[score.start : score.start + score.length],
        )


@dataclass(frozen=True)
class TokenScore:
    score: float

    @staticmethod
    def from_json(score: Any) -> "TokenScore":
        return TokenScore(
            score=score,
        )


@dataclass(frozen=True)
class ImagePromptItemExplanation:
    """

    Explains the importance of an image prompt item.

    The amount of items in the "scores" array depends on the granularity setting.

    Each score object contains the top-left corner of a rectangular area in the image prompt.

    The coordinates are all between 0 and 1 in terms of the total image size

    """

    scores: List[ImageScore]

    @staticmethod
    def from_json(item: Dict[str, Any]) -> "ImagePromptItemExplanation":
        return ImagePromptItemExplanation(
            scores=[ImageScore.from_json(score) for score in item["scores"]]
        )

    def in_pixels(self, prompt_item: PromptItem) -> "ImagePromptItemExplanation":
        if not isinstance(prompt_item, Image):
            raise ValueError
        (original_image_width, original_image_height) = prompt_item.dimensions()
        return ImagePromptItemExplanation(
            [
                ImageScore(
                    left=int(score.left * original_image_width),
                    width=int(score.width * original_image_width),
                    top=int(score.top * original_image_height),
                    height=int(score.height * original_image_height),
                    score=score.score,
                )
                for score in self.scores
            ]
        )


@dataclass(frozen=True)
class TextPromptItemExplanation:
    """

    Explains the importance of a text prompt item.

    The amount of items in the "scores" array depends on the granularity setting.

    Each score object contains an inclusive start character and a length of the substring plus

    a floating point score value.

    """

    scores: List[Union[TextScore, TextScoreWithRaw]]

    @staticmethod
    def from_json(item: Dict[str, Any]) -> "TextPromptItemExplanation":
        return TextPromptItemExplanation(
            scores=[TextScore.from_json(score) for score in item["scores"]]
        )

    def with_text(self, prompt: Text) -> "TextPromptItemExplanation":
        return TextPromptItemExplanation(
            scores=[
                TextScoreWithRaw.from_text_score(score, prompt)
                if isinstance(score, TextScore)
                else score
                for score in self.scores
            ]
        )


@dataclass(frozen=True)
class TargetPromptItemExplanation:
    """

    Explains the importance of text in the target string that came before the currently

    to-be-explained target token. The amount of items in the "scores" array depends on the

    granularity setting.

    Each score object contains an inclusive start character and a length of the substring plus

    a floating point score value.

    """

    scores: List[Union[TargetScore, TargetScoreWithRaw]]

    @staticmethod
    def from_json(item: Dict[str, Any]) -> "TargetPromptItemExplanation":
        return TargetPromptItemExplanation(
            scores=[TargetScore.from_json(score) for score in item["scores"]]
        )

    def with_text(self, prompt: str) -> "TargetPromptItemExplanation":
        return TargetPromptItemExplanation(
            scores=[
                TargetScoreWithRaw.from_target_score(score, prompt)
                if isinstance(score, TargetScore)
                else score
                for score in self.scores
            ]
        )


@dataclass(frozen=True)
class TokenPromptItemExplanation:
    """Explains the importance of a request prompt item of type "token_ids".

    Will contain one floating point importance value for each token in the same order as in the original prompt.

    """

    scores: List[TokenScore]

    @staticmethod
    def from_json(item: Dict[str, Any]) -> "TokenPromptItemExplanation":
        return TokenPromptItemExplanation(
            scores=[TokenScore.from_json(score) for score in item["scores"]]
        )


@dataclass(frozen=True)
class Explanation:
    """

    Explanations for a given portion of the target.



    Parameters:

        target (str, required)

            If target_granularity was set to "complete", then this will be the entire target. If it was set to "token", this will be a single target token.

        items (List[Union[TextPromptItemExplanation, TargetPromptItemExplanation, TokenPromptItemExplanation, ImagePromptItemExplanation], required)

            Contains one item for each prompt item (in order), and the last item refers to the target.

    """

    target: str
    items: List[
        Union[
            TextPromptItemExplanation,
            TargetPromptItemExplanation,
            TokenPromptItemExplanation,
            ImagePromptItemExplanation,
        ]
    ]

    def prompt_item_from_json(

        item: Any,

    ) -> Union[
        TextPromptItemExplanation,
        ImagePromptItemExplanation,
        TargetPromptItemExplanation,
        TokenPromptItemExplanation,
    ]:
        if item["type"] == "text":
            return TextPromptItemExplanation.from_json(item)
        elif item["type"] == "target":
            return TargetPromptItemExplanation.from_json(item)
        elif item["type"] == "image":
            return ImagePromptItemExplanation.from_json(item)
        elif item["type"] == "token_ids":
            return TokenPromptItemExplanation.from_json(item)
        else:
            raise NotImplementedError("Unsupported explanation type")

    @staticmethod
    def from_json(json: Dict[str, Any]) -> "Explanation":
        return Explanation(
            target=json["target"],
            items=[Explanation.prompt_item_from_json(item) for item in json["items"]],
        )

    def with_image_prompt_items_in_pixels(self, prompt: Prompt) -> "Explanation":
        return Explanation(
            target=self.target,
            items=[
                item.in_pixels(prompt.items[item_index])
                if isinstance(item, ImagePromptItemExplanation)
                else item
                for item_index, item in enumerate(self.items)
            ],
        )

    def with_text_from_prompt(self, prompt: Prompt, target: str) -> "Explanation":
        items: List[
            Union[
                TextPromptItemExplanation,
                ImagePromptItemExplanation,
                TargetPromptItemExplanation,
                TokenPromptItemExplanation,
            ]
        ] = []
        for item_index, item in enumerate(self.items):
            if isinstance(item, TextPromptItemExplanation):
                # separate variable to fix linting error
                prompt_item = prompt.items[item_index]
                if isinstance(prompt_item, Text):
                    items.append(item.with_text(prompt_item))
                else:
                    items.append(item)
            elif isinstance(item, TargetPromptItemExplanation):
                items.append(item.with_text(target))
            else:
                items.append(item)
        return Explanation(
            target=self.target,
            items=items,
        )


@dataclass(frozen=True)
class ExplanationResponse:
    """

    The top-level response data structure that will be returned from an explanation request.



    Parameters:

        model_version (str, required)

            Version of the model used to generate the explanation.

        explanations (List[Explanation], required)

            This array will contain one explanation object for each portion of the target.

    """

    model_version: str
    explanations: List[Explanation]

    @staticmethod
    def from_json(json: Dict[str, Any]) -> "ExplanationResponse":
        return ExplanationResponse(
            model_version=json["model_version"],
            explanations=[
                Explanation.from_json(explanation)
                for explanation in json["explanations"]
            ],
        )

    def with_image_prompt_items_in_pixels(

        self, prompt: Prompt

    ) -> "ExplanationResponse":
        mapped_explanations = [
            explanation.with_image_prompt_items_in_pixels(prompt)
            for explanation in self.explanations
        ]
        return ExplanationResponse(self.model_version, mapped_explanations)

    def with_text_from_prompt(

        self, request: ExplanationRequest

    ) -> "ExplanationResponse":
        mapped_explanations = [
            explanation.with_text_from_prompt(request.prompt, request.target)
            for explanation in self.explanations
        ]
        return ExplanationResponse(self.model_version, mapped_explanations)