Spaces:
Running
Running
| import os | |
| from pathlib import Path | |
| import gradio as gr | |
| import numpy as np | |
| import open3d as o3d | |
| import torch | |
| from PIL import Image | |
| from transformers import DPTForDepthEstimation, DPTImageProcessor | |
| # Initialize the image processor and depth estimation model | |
| image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") | |
| model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
| import spaces | |
| def process_image(image_path, resized_width=800, z_scale=208): | |
| """ | |
| Processes the input image to generate a depth map and a 3D mesh reconstruction. | |
| Args: | |
| image_path (str): The file path to the input image. | |
| Returns: | |
| list: A list containing the depth image, 3D mesh reconstruction, and GLTF file path. | |
| """ | |
| image_path = Path(image_path) | |
| if not image_path.exists(): | |
| raise ValueError("Image file not found") | |
| # Load and resize the image | |
| image_raw = Image.open(image_path).convert("RGB") | |
| print(f"Original size: {image_raw.size}") | |
| resized_height = int(resized_width * image_raw.size[1] / image_raw.size[0]) | |
| image = image_raw.resize((resized_width, resized_height), Image.Resampling.LANCZOS) | |
| print(f"Resized size: {image.size}") | |
| # Prepare image for the model | |
| encoding = image_processor(image, return_tensors="pt") | |
| # Perform depth estimation | |
| with torch.no_grad(): | |
| outputs = model(**encoding) | |
| predicted_depth = outputs.predicted_depth | |
| # Interpolate depth to match the image size | |
| prediction = torch.nn.functional.interpolate( | |
| predicted_depth.unsqueeze(1), | |
| size=(image.height, image.width), | |
| mode="bicubic", | |
| align_corners=False, | |
| ).squeeze() | |
| # Normalize the depth image to 8-bit | |
| if torch.cuda.is_available(): | |
| prediction = prediction.numpy() | |
| else: | |
| prediction = prediction.cpu().numpy() | |
| depth_min, depth_max = prediction.min(), prediction.max() | |
| depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8") | |
| try: | |
| gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=10, z_scale=z_scale) | |
| except Exception: | |
| gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=8, z_scale=z_scale) | |
| img = Image.fromarray(depth_image) | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| return [img, gltf_path, gltf_path] | |
| def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200): | |
| """ | |
| Creates a 3D object from RGB and depth images. | |
| Args: | |
| rgb_image (np.ndarray): The RGB image as a NumPy array. | |
| raw_depth (np.ndarray): The raw depth data. | |
| image_path (Path): The path to the original image. | |
| depth (int, optional): Depth parameter for Poisson reconstruction. Defaults to 10. | |
| z_scale (float, optional): Scaling factor for the Z-axis. Defaults to 200. | |
| Returns: | |
| str: The file path to the saved GLTF model. | |
| """ | |
| # Normalize the depth image | |
| depth_image = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min()) * 255).astype("uint8") | |
| depth_o3d = o3d.geometry.Image(depth_image) | |
| image_o3d = o3d.geometry.Image(rgb_image) | |
| # Create RGBD image | |
| rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
| image_o3d, depth_o3d, convert_rgb_to_intensity=False | |
| ) | |
| height, width = depth_image.shape | |
| # Define camera intrinsics | |
| camera_intrinsic = o3d.camera.PinholeCameraIntrinsic( | |
| width, | |
| height, | |
| fx=z_scale, | |
| fy=z_scale, | |
| cx=width / 2.0, | |
| cy=height / 2.0, | |
| ) | |
| # Generate point cloud from RGBD image | |
| pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic) | |
| # Scale the Z dimension | |
| points = np.asarray(pcd.points) | |
| depth_scaled = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min())) * (z_scale*100) | |
| z_values = depth_scaled.flatten()[:len(points)] | |
| points[:, 2] *= z_values | |
| pcd.points = o3d.utility.Vector3dVector(points) | |
| # Estimate and orient normals | |
| pcd.estimate_normals( | |
| search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=60) | |
| ) | |
| pcd.orient_normals_towards_camera_location(camera_location=np.array([0.0, 0.0, 1.5 ])) | |
| # Apply transformations | |
| pcd.transform([[1, 0, 0, 0], | |
| [0, -1, 0, 0], | |
| [0, 0, -1, 0], | |
| [0, 0, 0, 1]]) | |
| pcd.transform([[-1, 0, 0, 0], | |
| [0, 1, 0, 0], | |
| [0, 0, 1, 0], | |
| [0, 0, 0, 1]]) | |
| # Perform Poisson surface reconstruction | |
| print(f"Running Poisson surface reconstruction with depth {depth}") | |
| mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( | |
| pcd, depth=depth, width=0, scale=1.1, linear_fit=True | |
| ) | |
| print(f"Raw mesh vertices: {len(mesh_raw.vertices)}, triangles: {len(mesh_raw.triangles)}") | |
| # Simplify the mesh using vertex clustering | |
| voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / (max(width, height) * 0.8) | |
| mesh = mesh_raw.simplify_vertex_clustering( | |
| voxel_size=voxel_size, | |
| contraction=o3d.geometry.SimplificationContraction.Average, | |
| ) | |
| print(f"Simplified mesh vertices: {len(mesh.vertices)}, triangles: {len(mesh.triangles)}") | |
| # Crop the mesh to the bounding box of the point cloud | |
| bbox = pcd.get_axis_aligned_bounding_box() | |
| mesh_crop = mesh.crop(bbox) | |
| # Save the mesh as a GLTF file | |
| gltf_path = f"./models/{image_path.stem}.gltf" | |
| o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True) | |
| return gltf_path | |
| # Define Gradio interface components | |
| title = "Demo: Zero-Shot Depth Estimation with DPT + 3D Point Cloud" | |
| description = ( | |
| "This demo is a variation from the original " | |
| "<a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. " | |
| "It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object." | |
| ) | |
| # Create Gradio sliders for resized_width and z_scale | |
| resized_width_slider = gr.Slider( | |
| minimum=256, | |
| maximum=1760, | |
| step=16, | |
| value=800, | |
| label="Resized Width", | |
| info="Adjust the width to which the input image is resized." | |
| ) | |
| z_scale_slider = gr.Slider( | |
| minimum=0.2, | |
| maximum=3.0, | |
| step=0.01, | |
| value=0.5, | |
| label="Z-Scale", | |
| info="Adjust the scaling factor for the Z-axis in the 3D model." | |
| ) | |
| examples = [["examples/" + img] for img in os.listdir("examples/")] | |
| process_image.zerogpu = True | |
| gr.set_static_paths(paths=["models/","examples/"]) | |
| iface = gr.Interface( | |
| fn=process_image, | |
| inputs=[ | |
| gr.Image(type="filepath", label="Input Image"), | |
| resized_width_slider, | |
| z_scale_slider | |
| ], | |
| outputs=[ | |
| gr.Image(label="Predicted Depth", type="pil"), | |
| gr.Model3D(label="3D Mesh Reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]), | |
| gr.File(label="3D GLTF"), | |
| ], | |
| title=title, | |
| description=description, | |
| examples=examples, | |
| examples_per_page=15, | |
| flagging_mode=None, | |
| allow_flagging="never", | |
| cache_examples=False, | |
| delete_cache=(86400,86400), | |
| theme="Surn/Beeuty" | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch(debug=True, show_api=False, favicon_path="./favicon.ico") | |