Spaces:
Sleeping
Sleeping
Sushwetabm
commited on
Commit
Β·
6d5a8ce
1
Parent(s):
cf9564b
switched the model to Salesforce/codet5p-220m
Browse files
analyzer.py
CHANGED
@@ -211,116 +211,38 @@ logger.addHandler(handler)
|
|
211 |
def analyze_code(tokenizer, model, language, code):
|
212 |
start_time = time.time()
|
213 |
|
214 |
-
|
215 |
-
{
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
" - 'error_message': a short name of the bug\n"
|
225 |
-
" - 'explanation': short explanation of the problem\n"
|
226 |
-
" - 'fix_suggestion': how to fix it\n"
|
227 |
-
"2. 'corrected_code': the entire corrected code block.\n\n"
|
228 |
-
"Respond only with a JSON block, no extra commentary."
|
229 |
-
)
|
230 |
-
},
|
231 |
-
{
|
232 |
-
"role": "user",
|
233 |
-
"content": f"π» Language: {language}\nπ Buggy Code:\n```{language.lower()}\n{code.strip()}\n```"
|
234 |
-
}
|
235 |
-
]
|
236 |
|
237 |
try:
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
add_generation_prompt=True,
|
242 |
-
return_tensors="pt"
|
243 |
-
).to(model.device)
|
244 |
-
|
245 |
-
attention_mask = (inputs != tokenizer.pad_token_id).long()
|
246 |
-
|
247 |
-
logger.info("βοΈ Starting generation...")
|
248 |
-
generation_start = time.time()
|
249 |
-
outputs = model.generate(
|
250 |
-
inputs,
|
251 |
-
attention_mask=attention_mask,
|
252 |
-
max_new_tokens=1024,
|
253 |
-
do_sample=False,
|
254 |
-
pad_token_id=tokenizer.eos_token_id,
|
255 |
-
eos_token_id=tokenizer.eos_token_id
|
256 |
-
)
|
257 |
-
generation_time = time.time() - generation_start
|
258 |
-
logger.info(f"β‘ Generation completed in {generation_time:.2f} seconds")
|
259 |
-
|
260 |
-
logger.info("π Decoding response...")
|
261 |
-
response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
262 |
-
|
263 |
-
logger.info(f"π Response length: {len(response)} characters")
|
264 |
-
logger.info(f"π First 100 chars: {response[:100]}...")
|
265 |
-
|
266 |
-
# Attempt to parse as JSON
|
267 |
-
logger.info("π Attempting to parse JSON...")
|
268 |
-
cleaned_response = response.strip()
|
269 |
-
if cleaned_response.startswith('```json'):
|
270 |
-
cleaned_response = cleaned_response[7:]
|
271 |
-
elif cleaned_response.startswith('```'):
|
272 |
-
cleaned_response = cleaned_response[3:]
|
273 |
-
if cleaned_response.endswith('```'):
|
274 |
-
cleaned_response = cleaned_response[:-3]
|
275 |
-
|
276 |
-
cleaned_response = cleaned_response.strip()
|
277 |
|
278 |
-
|
|
|
|
|
279 |
|
280 |
-
total_time = time.time() - start_time
|
281 |
-
logger.info(f"β
Analysis completed successfully in {total_time:.2f} seconds")
|
282 |
-
|
283 |
-
# Validate and patch missing keys
|
284 |
-
if not isinstance(json_output, dict):
|
285 |
-
raise ValueError("Parsed response is not a dictionary")
|
286 |
-
|
287 |
-
if 'bug_analysis' not in json_output:
|
288 |
-
logger.warning("β οΈ Missing 'bug_analysis' key, adding empty list")
|
289 |
-
json_output['bug_analysis'] = []
|
290 |
-
|
291 |
-
if 'corrected_code' not in json_output:
|
292 |
-
logger.warning("β οΈ Missing 'corrected_code' key, adding original code")
|
293 |
-
json_output['corrected_code'] = code
|
294 |
-
|
295 |
-
return json_output
|
296 |
-
|
297 |
-
except json.JSONDecodeError as e:
|
298 |
-
logger.error(f"β JSON decode error: {e}")
|
299 |
-
logger.error(f"π Raw response: {repr(response)}")
|
300 |
return {
|
301 |
-
"bug_analysis": [
|
302 |
-
|
303 |
-
"error_message": "Analysis parsing failed",
|
304 |
-
"explanation": "The AI model returned a response that couldn't be parsed as JSON",
|
305 |
-
"fix_suggestion": "Please try again or check the code format"
|
306 |
-
}],
|
307 |
-
"corrected_code": code,
|
308 |
-
"raw_output": response,
|
309 |
-
"parsing_error": str(e)
|
310 |
}
|
311 |
|
312 |
except Exception as e:
|
313 |
-
total_time = time.time() - start_time
|
314 |
-
logger.error(f"β Analysis failed after {total_time:.2f} seconds: {str(e)}")
|
315 |
-
logger.error(f"π₯ Exception type: {type(e).__name__}")
|
316 |
return {
|
317 |
"bug_analysis": [{
|
318 |
-
"line_number":
|
319 |
-
"error_message": "
|
320 |
-
"explanation":
|
321 |
-
"fix_suggestion": "
|
322 |
}],
|
323 |
-
"corrected_code": code
|
324 |
-
"error": str(e),
|
325 |
-
"error_type": type(e).__name__
|
326 |
}
|
|
|
211 |
def analyze_code(tokenizer, model, language, code):
|
212 |
start_time = time.time()
|
213 |
|
214 |
+
prompt = (
|
215 |
+
f"Language: {language}\n"
|
216 |
+
f"Task: Fix the following buggy code and explain the bugs.\n"
|
217 |
+
f"Input Code:\n{code.strip()}\n\n"
|
218 |
+
f"Respond with a JSON like this:\n"
|
219 |
+
f"{{\n"
|
220 |
+
f" \"bug_analysis\": [{{\"line_number\": X, \"error_message\": \"...\", \"explanation\": \"...\", \"fix_suggestion\": \"...\"}}],\n"
|
221 |
+
f" \"corrected_code\": \"...\"\n"
|
222 |
+
f"}}"
|
223 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
try:
|
226 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(model.device)
|
227 |
+
output = model.generate(**inputs, max_new_tokens=1024)
|
228 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
# Clean response if needed
|
231 |
+
cleaned = response.strip().strip("```json").strip("```").strip()
|
232 |
+
json_output = json.loads(cleaned)
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
return {
|
235 |
+
"bug_analysis": json_output.get("bug_analysis", []),
|
236 |
+
"corrected_code": json_output.get("corrected_code", code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
}
|
238 |
|
239 |
except Exception as e:
|
|
|
|
|
|
|
240 |
return {
|
241 |
"bug_analysis": [{
|
242 |
+
"line_number": 0,
|
243 |
+
"error_message": "Failed to parse",
|
244 |
+
"explanation": str(e),
|
245 |
+
"fix_suggestion": "Try simplifying the code."
|
246 |
}],
|
247 |
+
"corrected_code": code
|
|
|
|
|
248 |
}
|
main.py
CHANGED
@@ -295,7 +295,7 @@ async def analyze(req: AnalyzeRequest):
|
|
295 |
|
296 |
try:
|
297 |
tokenizer, model = get_model()
|
298 |
-
result = analyze_code(req.language, req.code
|
299 |
|
300 |
if result is None:
|
301 |
raise HTTPException(status_code=500, detail="Model failed to return any response.")
|
@@ -350,7 +350,8 @@ async def analyze_for_frontend(req: AnalyzeRequest):
|
|
350 |
|
351 |
try:
|
352 |
tokenizer, model = get_model()
|
353 |
-
result = analyze_code(req.language, req.code
|
|
|
354 |
|
355 |
if result is None:
|
356 |
return {
|
|
|
295 |
|
296 |
try:
|
297 |
tokenizer, model = get_model()
|
298 |
+
result = analyze_code(tokenizer, model, req.language, req.code)
|
299 |
|
300 |
if result is None:
|
301 |
raise HTTPException(status_code=500, detail="Model failed to return any response.")
|
|
|
350 |
|
351 |
try:
|
352 |
tokenizer, model = get_model()
|
353 |
+
result = analyze_code(tokenizer, model, req.language, req.code)
|
354 |
+
|
355 |
|
356 |
if result is None:
|
357 |
return {
|
model.py
CHANGED
@@ -1,124 +1,159 @@
|
|
1 |
-
# model.py - Optimized version
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from functools import lru_cache
|
5 |
-
import os
|
6 |
-
import asyncio
|
7 |
-
from concurrent.futures import ThreadPoolExecutor
|
8 |
import logging
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
-
|
12 |
-
# Global variables to store loaded model
|
13 |
_tokenizer = None
|
14 |
_model = None
|
15 |
-
_model_loading = False
|
16 |
-
_model_loaded = False
|
17 |
-
|
18 |
@lru_cache(maxsize=1)
|
19 |
def get_model_config():
|
20 |
-
"""Cache model configuration"""
|
21 |
return {
|
22 |
-
"model_id": "
|
23 |
-
"
|
24 |
-
"device_map": "auto",
|
25 |
-
"trust_remote_code": True,
|
26 |
-
# Add these optimizations
|
27 |
-
"low_cpu_mem_usage": True,
|
28 |
-
"use_cache": True,
|
29 |
}
|
30 |
|
31 |
def load_model_sync():
|
32 |
-
"""Synchronous model loading with optimizations"""
|
33 |
global _tokenizer, _model, _model_loaded
|
34 |
-
|
35 |
if _model_loaded:
|
36 |
return _tokenizer, _model
|
37 |
-
|
38 |
config = get_model_config()
|
39 |
model_id = config["model_id"]
|
40 |
-
|
41 |
-
logger.info(f"π§ Loading model {model_id}...")
|
42 |
-
|
43 |
try:
|
44 |
-
|
45 |
-
|
46 |
-
os.makedirs(cache_dir, exist_ok=True)
|
47 |
-
|
48 |
-
# Load tokenizer first (faster)
|
49 |
-
logger.info("π Loading tokenizer...")
|
50 |
-
_tokenizer = AutoTokenizer.from_pretrained(
|
51 |
-
model_id,
|
52 |
-
trust_remote_code=config["trust_remote_code"],
|
53 |
-
cache_dir=cache_dir,
|
54 |
-
use_fast=True, # Use fast tokenizer if available
|
55 |
-
)
|
56 |
-
|
57 |
-
# Load model with optimizations
|
58 |
-
logger.info("π§ Loading model...")
|
59 |
-
_model = AutoModelForCausalLM.from_pretrained(
|
60 |
-
model_id,
|
61 |
-
trust_remote_code=config["trust_remote_code"],
|
62 |
-
torch_dtype=config["torch_dtype"],
|
63 |
-
device_map=config["device_map"],
|
64 |
-
low_cpu_mem_usage=config["low_cpu_mem_usage"],
|
65 |
-
cache_dir=cache_dir,
|
66 |
-
offload_folder="offload",
|
67 |
-
offload_state_dict=True
|
68 |
-
)
|
69 |
-
|
70 |
-
# Set to evaluation mode
|
71 |
_model.eval()
|
72 |
-
|
73 |
_model_loaded = True
|
74 |
-
logger.info("β
Model loaded successfully!")
|
75 |
return _tokenizer, _model
|
76 |
-
|
77 |
except Exception as e:
|
78 |
logger.error(f"β Failed to load model: {e}")
|
79 |
raise
|
80 |
-
|
81 |
-
async def load_model_async():
|
82 |
-
"""Asynchronous model loading"""
|
83 |
-
global _model_loading
|
84 |
-
|
85 |
-
if _model_loaded:
|
86 |
-
return _tokenizer, _model
|
87 |
-
|
88 |
-
if _model_loading:
|
89 |
-
# Wait for ongoing loading to complete
|
90 |
-
while _model_loading and not _model_loaded:
|
91 |
-
await asyncio.sleep(0.1)
|
92 |
-
return _tokenizer, _model
|
93 |
-
|
94 |
-
_model_loading = True
|
95 |
-
|
96 |
-
try:
|
97 |
-
# Run model loading in thread pool to avoid blocking
|
98 |
-
loop = asyncio.get_event_loop()
|
99 |
-
with ThreadPoolExecutor(max_workers=1) as executor:
|
100 |
-
tokenizer, model = await loop.run_in_executor(
|
101 |
-
executor, load_model_sync
|
102 |
-
)
|
103 |
-
return tokenizer, model
|
104 |
-
finally:
|
105 |
-
_model_loading = False
|
106 |
-
|
107 |
-
def get_model():
|
108 |
-
"""Get the loaded model (for synchronous access)"""
|
109 |
-
if not _model_loaded:
|
110 |
-
return load_model_sync()
|
111 |
-
return _tokenizer, _model
|
112 |
-
|
113 |
-
def is_model_loaded():
|
114 |
-
"""Check if model is loaded"""
|
115 |
-
return _model_loaded
|
116 |
-
|
117 |
-
def get_model_info():
|
118 |
-
"""Get model information without loading"""
|
119 |
-
config = get_model_config()
|
120 |
-
return {
|
121 |
-
"model_id": config["model_id"],
|
122 |
-
"loaded": _model_loaded,
|
123 |
-
"loading": _model_loading,
|
124 |
-
}
|
|
|
1 |
+
# # model.py - Optimized version
|
2 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
# import torch
|
4 |
+
# from functools import lru_cache
|
5 |
+
# import os
|
6 |
+
# import asyncio
|
7 |
+
# from concurrent.futures import ThreadPoolExecutor
|
8 |
+
# import logging
|
9 |
+
|
10 |
+
# logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
# # Global variables to store loaded model
|
13 |
+
# _tokenizer = None
|
14 |
+
# _model = None
|
15 |
+
# _model_loading = False
|
16 |
+
# _model_loaded = False
|
17 |
+
|
18 |
+
# @lru_cache(maxsize=1)
|
19 |
+
# def get_model_config():
|
20 |
+
# """Cache model configuration"""
|
21 |
+
# return {
|
22 |
+
# "model_id": "deepseek-ai/deepseek-coder-1.3b-instruct",
|
23 |
+
# "torch_dtype": torch.bfloat16,
|
24 |
+
# "device_map": "auto",
|
25 |
+
# "trust_remote_code": True,
|
26 |
+
# # Add these optimizations
|
27 |
+
# "low_cpu_mem_usage": True,
|
28 |
+
# "use_cache": True,
|
29 |
+
# }
|
30 |
+
|
31 |
+
# def load_model_sync():
|
32 |
+
# """Synchronous model loading with optimizations"""
|
33 |
+
# global _tokenizer, _model, _model_loaded
|
34 |
+
|
35 |
+
# if _model_loaded:
|
36 |
+
# return _tokenizer, _model
|
37 |
+
|
38 |
+
# config = get_model_config()
|
39 |
+
# model_id = config["model_id"]
|
40 |
+
|
41 |
+
# logger.info(f"π§ Loading model {model_id}...")
|
42 |
+
|
43 |
+
# try:
|
44 |
+
# # Set cache directory to avoid re-downloading
|
45 |
+
# cache_dir = os.environ.get("TRANSFORMERS_CACHE", "./model_cache")
|
46 |
+
# os.makedirs(cache_dir, exist_ok=True)
|
47 |
+
|
48 |
+
# # Load tokenizer first (faster)
|
49 |
+
# logger.info("π Loading tokenizer...")
|
50 |
+
# _tokenizer = AutoTokenizer.from_pretrained(
|
51 |
+
# model_id,
|
52 |
+
# trust_remote_code=config["trust_remote_code"],
|
53 |
+
# cache_dir=cache_dir,
|
54 |
+
# use_fast=True, # Use fast tokenizer if available
|
55 |
+
# )
|
56 |
+
|
57 |
+
# # Load model with optimizations
|
58 |
+
# logger.info("π§ Loading model...")
|
59 |
+
# _model = AutoModelForCausalLM.from_pretrained(
|
60 |
+
# model_id,
|
61 |
+
# trust_remote_code=config["trust_remote_code"],
|
62 |
+
# torch_dtype=config["torch_dtype"],
|
63 |
+
# device_map=config["device_map"],
|
64 |
+
# low_cpu_mem_usage=config["low_cpu_mem_usage"],
|
65 |
+
# cache_dir=cache_dir,
|
66 |
+
# offload_folder="offload",
|
67 |
+
# offload_state_dict=True
|
68 |
+
# )
|
69 |
+
|
70 |
+
# # Set to evaluation mode
|
71 |
+
# _model.eval()
|
72 |
+
|
73 |
+
# _model_loaded = True
|
74 |
+
# logger.info("β
Model loaded successfully!")
|
75 |
+
# return _tokenizer, _model
|
76 |
+
|
77 |
+
# except Exception as e:
|
78 |
+
# logger.error(f"β Failed to load model: {e}")
|
79 |
+
# raise
|
80 |
+
|
81 |
+
# async def load_model_async():
|
82 |
+
# """Asynchronous model loading"""
|
83 |
+
# global _model_loading
|
84 |
+
|
85 |
+
# if _model_loaded:
|
86 |
+
# return _tokenizer, _model
|
87 |
+
|
88 |
+
# if _model_loading:
|
89 |
+
# # Wait for ongoing loading to complete
|
90 |
+
# while _model_loading and not _model_loaded:
|
91 |
+
# await asyncio.sleep(0.1)
|
92 |
+
# return _tokenizer, _model
|
93 |
+
|
94 |
+
# _model_loading = True
|
95 |
+
|
96 |
+
# try:
|
97 |
+
# # Run model loading in thread pool to avoid blocking
|
98 |
+
# loop = asyncio.get_event_loop()
|
99 |
+
# with ThreadPoolExecutor(max_workers=1) as executor:
|
100 |
+
# tokenizer, model = await loop.run_in_executor(
|
101 |
+
# executor, load_model_sync
|
102 |
+
# )
|
103 |
+
# return tokenizer, model
|
104 |
+
# finally:
|
105 |
+
# _model_loading = False
|
106 |
+
|
107 |
+
# def get_model():
|
108 |
+
# """Get the loaded model (for synchronous access)"""
|
109 |
+
# if not _model_loaded:
|
110 |
+
# return load_model_sync()
|
111 |
+
# return _tokenizer, _model
|
112 |
+
|
113 |
+
# def is_model_loaded():
|
114 |
+
# """Check if model is loaded"""
|
115 |
+
# return _model_loaded
|
116 |
+
|
117 |
+
# def get_model_info():
|
118 |
+
# """Get model information without loading"""
|
119 |
+
# config = get_model_config()
|
120 |
+
# return {
|
121 |
+
# "model_id": config["model_id"],
|
122 |
+
# "loaded": _model_loaded,
|
123 |
+
# "loading": _model_loading,
|
124 |
+
# }
|
125 |
+
|
126 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
127 |
from functools import lru_cache
|
|
|
|
|
|
|
128 |
import logging
|
129 |
|
130 |
logger = logging.getLogger(__name__)
|
131 |
+
_model_loaded = False
|
|
|
132 |
_tokenizer = None
|
133 |
_model = None
|
|
|
|
|
|
|
134 |
@lru_cache(maxsize=1)
|
135 |
def get_model_config():
|
|
|
136 |
return {
|
137 |
+
"model_id": "Salesforce/codet5p-220m",
|
138 |
+
"trust_remote_code": True
|
|
|
|
|
|
|
|
|
|
|
139 |
}
|
140 |
|
141 |
def load_model_sync():
|
|
|
142 |
global _tokenizer, _model, _model_loaded
|
143 |
+
|
144 |
if _model_loaded:
|
145 |
return _tokenizer, _model
|
146 |
+
|
147 |
config = get_model_config()
|
148 |
model_id = config["model_id"]
|
149 |
+
|
|
|
|
|
150 |
try:
|
151 |
+
_tokenizer = AutoTokenizer.from_pretrained(model_id)
|
152 |
+
_model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
_model.eval()
|
|
|
154 |
_model_loaded = True
|
|
|
155 |
return _tokenizer, _model
|
156 |
+
|
157 |
except Exception as e:
|
158 |
logger.error(f"β Failed to load model: {e}")
|
159 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
setup.py
CHANGED
@@ -1,106 +1,122 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
Quick setup script to optimize your existing ML microservice.
|
4 |
-
Run this to set up caching and pre-download the model.
|
5 |
-
"""
|
6 |
|
7 |
-
import os
|
8 |
-
import sys
|
9 |
-
import logging
|
10 |
-
from pathlib import Path
|
11 |
|
12 |
-
# Configure logging
|
13 |
-
logging.basicConfig(level=logging.INFO)
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
def setup_cache_directory():
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
def set_environment_variables():
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
def pre_download_model():
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
-
def main():
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
-
|
|
|
|
1 |
+
# #!/usr/bin/env python3
|
2 |
+
# """
|
3 |
+
# Quick setup script to optimize your existing ML microservice.
|
4 |
+
# Run this to set up caching and pre-download the model.
|
5 |
+
# """
|
6 |
|
7 |
+
# import os
|
8 |
+
# import sys
|
9 |
+
# import logging
|
10 |
+
# from pathlib import Path
|
11 |
|
12 |
+
# # Configure logging
|
13 |
+
# logging.basicConfig(level=logging.INFO)
|
14 |
+
# logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
# def setup_cache_directory():
|
17 |
+
# """Create cache directory for models"""
|
18 |
+
# cache_dir = Path("./model_cache")
|
19 |
+
# cache_dir.mkdir(exist_ok=True)
|
20 |
+
# logger.info(f"β
Cache directory created: {cache_dir.absolute()}")
|
21 |
+
# return cache_dir
|
22 |
|
23 |
+
# def set_environment_variables():
|
24 |
+
# """Set environment variables for optimization"""
|
25 |
+
# env_vars = {
|
26 |
+
# "TRANSFORMERS_CACHE": "./model_cache",
|
27 |
+
# "HF_HOME": "./model_cache",
|
28 |
+
# "TORCH_HOME": "./model_cache",
|
29 |
+
# "TOKENIZERS_PARALLELISM": "false",
|
30 |
+
# "OMP_NUM_THREADS": "4"
|
31 |
+
# }
|
32 |
|
33 |
+
# for key, value in env_vars.items():
|
34 |
+
# os.environ[key] = value
|
35 |
+
# logger.info(f"Set {key}={value}")
|
36 |
|
37 |
+
# def pre_download_model():
|
38 |
+
# """Pre-download the model to cache"""
|
39 |
+
# try:
|
40 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
41 |
|
42 |
+
# model_id = "deepseek-ai/deepseek-coder-1.3b-instruct"
|
43 |
+
# cache_dir = "./model_cache"
|
44 |
|
45 |
+
# logger.info(f"π§ Pre-downloading model: {model_id}")
|
46 |
+
# logger.info("This may take a few minutes on first run...")
|
47 |
|
48 |
+
# # Download tokenizer
|
49 |
+
# logger.info("π Downloading tokenizer...")
|
50 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
51 |
+
# model_id,
|
52 |
+
# cache_dir=cache_dir,
|
53 |
+
# trust_remote_code=True
|
54 |
+
# )
|
55 |
|
56 |
+
# # Download model
|
57 |
+
# logger.info("π§ Downloading model...")
|
58 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
# model_id,
|
60 |
+
# cache_dir=cache_dir,
|
61 |
+
# trust_remote_code=True,
|
62 |
+
# torch_dtype="auto", # Let it choose the best dtype
|
63 |
+
# low_cpu_mem_usage=True,
|
64 |
+
# )
|
65 |
|
66 |
+
# logger.info("β
Model downloaded and cached successfully!")
|
67 |
+
# logger.info(f"π Model cached in: {Path(cache_dir).absolute()}")
|
68 |
|
69 |
+
# # Test that everything works
|
70 |
+
# logger.info("π§ͺ Testing model loading...")
|
71 |
+
# del model, tokenizer # Free memory
|
72 |
|
73 |
+
# return True
|
74 |
|
75 |
+
# except Exception as e:
|
76 |
+
# logger.error(f"β Failed to pre-download model: {e}")
|
77 |
+
# return False
|
78 |
|
79 |
+
# def main():
|
80 |
+
# """Main setup function"""
|
81 |
+
# logger.info("π Setting up ML Microservice Optimizations")
|
82 |
+
# logger.info("=" * 50)
|
83 |
|
84 |
+
# # Step 1: Setup cache directory
|
85 |
+
# setup_cache_directory()
|
86 |
|
87 |
+
# # Step 2: Set environment variables
|
88 |
+
# set_environment_variables()
|
89 |
|
90 |
+
# # Step 3: Pre-download model
|
91 |
+
# success = pre_download_model()
|
92 |
|
93 |
+
# if success:
|
94 |
+
# logger.info("\nβ
Setup completed successfully!")
|
95 |
+
# logger.info("π Next steps:")
|
96 |
+
# logger.info("1. Replace your main.py with the optimized version")
|
97 |
+
# logger.info("2. Replace your model.py with the optimized version")
|
98 |
+
# logger.info("3. Run: python main.py")
|
99 |
+
# logger.info("\nπ Your server will now start much faster!")
|
100 |
+
# else:
|
101 |
+
# logger.error("\nβ Setup failed!")
|
102 |
+
# logger.error("Please check your internet connection and try again.")
|
103 |
+
# sys.exit(1)
|
104 |
+
|
105 |
+
# if __name__ == "__main__":
|
106 |
+
# main()
|
107 |
+
|
108 |
+
# setup.py
|
109 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
110 |
+
import os
|
111 |
+
|
112 |
+
MODEL_ID = "Salesforce/codet5p-220m"
|
113 |
+
|
114 |
+
def download_model():
|
115 |
+
print(f"[SETUP] Downloading model: {MODEL_ID}")
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
117 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID)
|
118 |
+
print("[SETUP] Model and tokenizer downloaded β
")
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
+
os.makedirs("model_cache", exist_ok=True)
|
122 |
+
download_model()
|