File size: 7,079 Bytes
5806e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Morpheme Detector from SATE v1

import os
import json
import stanza
import re

nlp = stanza.Pipeline(
    lang="en",
    processors="tokenize,pos,lemma",
    tokenize_pretokenized=False,
)

_EXPECTED_SUFFIXES = {
    "Plural":              {"s", "es"},
    "Possessive":          {"'s", "s"},
    "Comparative":         {"er"},
    "Superlative":         {"est"},
    "3rd Person Singular": {"s", "es"},
    "Past Tense":          {"ed"},
    "Past Participle":     {"ed", "en", "n"},
    "Progressive":         {"ing"},
    "Gerund":              {"ing"},
}

_CONTRACTION_PARTICLES = {
    "'ll": "will",          # we'll, he'll
    "'d":  "would/had",     # I'd, she'd
    "'ve": "have",          # we've, they've
    "'re": "are",           # you're, they're
    "'m":  "am",            # I'm
    "n't": "not",           # isn't, didn't
    "'s":  "is/has",        # what's, she's 
}

_S_TOKENS = {"'s", "’s"}


def is_possessive_candidate(tok):
    return tok.text in _S_TOKENS and tok.upos == "PART"


def lcp(a: str, b: str) -> str:
    i = 0
    while i < min(len(a), len(b)) and a[i].lower() == b[i].lower():
        i += 1
    return a[:i]


def strip_doubling(lemma: str, suf: str) -> str:
    if suf and len(suf) >= 2 and suf[0] == lemma[-1]:
        cand = suf[1:]
        if any(cand in v for v in _EXPECTED_SUFFIXES.values()):
            return cand
    return suf


def get_suffix(lemma: str, surface: str) -> str:
    return strip_doubling(lemma, surface[len(lcp(lemma, surface)):])


def normalize_suffix(lemma: str, raw_suf: str, expected_set: set) -> str | None:
    if raw_suf in expected_set:
        return raw_suf
    if lemma.lower().endswith("y") and raw_suf.startswith("i"):
        alt = raw_suf[1:]
        if alt in expected_set:
            return alt
    return None


def preprocess_text(text: str) -> tuple[str, list[int]]:

    original_words = text.split()
    
    position_map = []  # position_map[original_index] = cleaned_index
    cleaned_words = []
    
    for i, word in enumerate(original_words):
        if re.match(r'\[.*\]', word):
            position_map.append(-1)
        else:
            position_map.append(len(cleaned_words))
            cleaned_words.append(word)
    
    cleaned_text = ' '.join(cleaned_words)
    return cleaned_text, position_map


def calculate_adjusted_index(cleaned_index: int, position_map: list[int]) -> int:

    for original_index, cleaned_pos in enumerate(position_map):
        if cleaned_pos == cleaned_index:
            return original_index
    

    return cleaned_index


def extract_inflectional_morphemes(text: str):
    cleaned_text, position_map = preprocess_text(text)
    
    doc = nlp(cleaned_text)
    results = []

    for sent in doc.sentences:
        words = sent.words
        i = 0
        while i < len(words):
            w = words[i]
            surf, lem, pos = w.text, w.lemma, w.upos
            feats = {k: v for k, v in (f.split("=", 1) for f in (w.feats or "").split("|") if "=" in f)}
            low_txt = surf.lower()

            if is_possessive_candidate(w) and i > 0:
                prev = words[i - 1]

                if prev.upos in {"NOUN", "PROPN"}:
                    results.append({
                        "word": prev.text + surf,
                        "lemma": prev.lemma,
                        "index": calculate_adjusted_index(i - 1, position_map),
                        "inflectional_morpheme": "Possessive",
                        "morpheme_form": "'/s",
                    })
                else:
                    results.append({
                        "word": prev.text + surf,
                        "lemma": prev.lemma,
                        "index": calculate_adjusted_index(i - 1, position_map),
                        "inflectional_morpheme": "Contraction",
                        "morpheme_form": "'/s",
                    })
                i += 1
                continue

            if low_txt in _CONTRACTION_PARTICLES and i > 0:
                prev = words[i - 1]
                results.append({
                    "word": prev.text + surf,
                    "lemma": prev.lemma,
                    "index": calculate_adjusted_index(i - 1, position_map),
                    "inflectional_morpheme": "Contraction",
                    "morpheme_form": low_txt,
                })
                i += 1
                continue

            if feats.get("Poss") == "Yes" and pos in {"PRON", "DET"}:
                low_lem, low_surf = lem.lower(), surf.lower()
                suf = get_suffix(low_lem, low_surf)
                morpheme_form = "/s" if suf in {"s", "es"} and low_lem + suf == low_surf else "<IRR>"
                results.append({
                    "word": surf,
                    "lemma": lem,
                    "index": calculate_adjusted_index(i, position_map),
                    "inflectional_morpheme": "Possessive",
                    "morpheme_form": morpheme_form,
                })
                i += 1
                continue

            inflect_type = None
            if pos == "NOUN" and feats.get("Number") == "Plur":
                inflect_type = "Plural"
            elif pos == "ADJ" and feats.get("Degree") == "Cmp":
                inflect_type = "Comparative"
            elif pos == "ADJ" and feats.get("Degree") == "Sup":
                inflect_type = "Superlative"
            elif pos == "VERB" and feats.get("VerbForm") == "Fin" and feats.get("Tense") == "Pres" and feats.get("Person") == "3":
                inflect_type = "3rd Person Singular"
            elif pos == "VERB" and feats.get("VerbForm") == "Fin" and feats.get("Tense") == "Past":
                inflect_type = "Past Tense"
            elif pos == "VERB" and feats.get("VerbForm") == "Part":
                if feats.get("Tense") == "Past" or w.xpos == "VBN":
                    inflect_type = "Past Participle"
                elif feats.get("Tense") == "Pres" or w.xpos == "VBG":
                    inflect_type = "Progressive"

            if inflect_type:
                if surf.lower() == lem.lower() and inflect_type not in {"Possessive", "Comparative", "Superlative"}:
                    i += 1
                    continue

                raw_suffix = get_suffix(lem, low_txt)
                canon = normalize_suffix(lem, raw_suffix, _EXPECTED_SUFFIXES[inflect_type])
                morpheme_form = f"/{canon}" if canon else "<IRR>"
                results.append({
                    "word": surf,
                    "lemma": lem,
                    "index": calculate_adjusted_index(i, position_map),
                    "inflectional_morpheme": inflect_type,
                    "morpheme_form": morpheme_form,
                })

            i += 1

    return results


if __name__ == "__main__":
    print("First Test")
    print(extract_inflectional_morphemes("I see that the elephant is a bounce bounceing three balls at a ball"))
    print("Second Test")
    print(extract_inflectional_morphemes("I see that the elephant is bounceing a ball"))