Enhance speaker identification functionality and add comprehensive tests for audio inputs, updated requirments.txt
Browse files- requirements.txt +3 -1
- speaker/speaker_identification.py +111 -9
- test_eval_speaker_identification.py +133 -0
requirements.txt
CHANGED
@@ -20,4 +20,6 @@ scipy>=1.7.0
|
|
20 |
matplotlib>=3.3.0
|
21 |
seaborn>=0.11.0
|
22 |
|
23 |
-
# install ffmpeg
|
|
|
|
|
|
20 |
matplotlib>=3.3.0
|
21 |
seaborn>=0.11.0
|
22 |
|
23 |
+
# install ffmpeg
|
24 |
+
librosa>=0.8.0
|
25 |
+
transformers>=4.0.0
|
speaker/speaker_identification.py
CHANGED
@@ -1,16 +1,118 @@
|
|
1 |
-
from typing import List
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
14 |
return speaker_ids
|
15 |
|
16 |
|
|
|
1 |
+
from typing import List, Union, Optional
|
2 |
+
import os
|
3 |
|
4 |
+
import numpy as np
|
5 |
+
import librosa
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# Default sample rate for audio processing
|
9 |
+
DEFAULT_SAMPLE_RATE = 16000
|
10 |
+
|
11 |
+
# Singleton pattern to avoid loading the model multiple times
|
12 |
+
_PREDICTOR_INSTANCE = None
|
13 |
+
|
14 |
+
def get_predictor():
|
15 |
+
"""
|
16 |
+
Get or create the singleton predictor instance.
|
17 |
+
Returns:
|
18 |
+
Predictor: A shared instance of the Predictor class.
|
19 |
+
"""
|
20 |
+
global _PREDICTOR_INSTANCE
|
21 |
+
if _PREDICTOR_INSTANCE is None:
|
22 |
+
_PREDICTOR_INSTANCE = Predictor()
|
23 |
+
return _PREDICTOR_INSTANCE
|
24 |
+
class Predictor:
|
25 |
+
def __init__(self, model_path: Optional[str] = None):
|
26 |
+
"""
|
27 |
+
Initialize the predictor with a pre-trained model.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
model_path: Optional path to a local model. If None, uses the default HuggingFace model.
|
31 |
+
"""
|
32 |
+
# Load Hugging Face audio-classification pipeline
|
33 |
+
self.model = pipeline("audio-classification", model="bookbot/wav2vec2-adult-child-cls")
|
34 |
+
|
35 |
+
def preprocess(self, input_item: Union[str, np.ndarray]) -> np.ndarray:
|
36 |
+
"""
|
37 |
+
Preprocess an input item (either file path or numpy array).
|
38 |
+
|
39 |
+
Args:
|
40 |
+
input_item: Either a file path string or a numpy array of audio data.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
np.ndarray: Processed audio data as a numpy array.
|
44 |
+
|
45 |
+
Raises:
|
46 |
+
ValueError: If input type is unsupported.
|
47 |
+
"""
|
48 |
+
if isinstance(input_item, str):
|
49 |
+
# Load audio file to numpy array
|
50 |
+
audio, _ = librosa.load(input_item, sr=DEFAULT_SAMPLE_RATE)
|
51 |
+
return audio
|
52 |
+
elif isinstance(input_item, np.ndarray):
|
53 |
+
return input_item
|
54 |
+
else:
|
55 |
+
raise ValueError(f"Unsupported input type: {type(input_item)}")
|
56 |
+
|
57 |
+
def predict(self, input_list: List[Union[str, np.ndarray]]) -> List[int]:
|
58 |
+
"""
|
59 |
+
Predict speaker type (child=0, adult=1) for a list of audio inputs.
|
60 |
|
61 |
+
Args:
|
62 |
+
input_list: List of inputs, either file paths or numpy arrays.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
List[int]: List of predictions (0=child, 1=adult, -1=unknown).
|
66 |
+
"""
|
67 |
+
# Preprocess all inputs first
|
68 |
+
processed = [self.preprocess(item) for item in input_list]
|
69 |
+
|
70 |
+
# Batch inference
|
71 |
+
preds = self.model(processed, sampling_rate=DEFAULT_SAMPLE_RATE)
|
72 |
+
|
73 |
+
# Map label to 0 (child) or 1 (adult)
|
74 |
+
label_map = {
|
75 |
+
"child": 0,
|
76 |
+
"adult": 1
|
77 |
+
}
|
78 |
+
|
79 |
+
results = []
|
80 |
+
for pred in preds:
|
81 |
+
# pred can be a list of dicts (top-k), take the top prediction
|
82 |
+
if isinstance(pred, list):
|
83 |
+
label = pred[0]["label"]
|
84 |
+
else:
|
85 |
+
label = pred["label"]
|
86 |
+
results.append(label_map.get(label.lower(), -1)) # -1 for unknown label
|
87 |
+
return results
|
88 |
+
|
89 |
+
# Usage:
|
90 |
+
# predictor = Predictor("path/to/model")
|
91 |
+
# predictions = predictor.predict(list_of_inputs)
|
92 |
|
93 |
+
def assign_speaker_for_audio_list(audio_list: List[Union[str, np.ndarray]]) -> List[str]:
|
94 |
+
"""
|
95 |
+
Assigns speaker IDs for a list of audio segments.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
audio_list: List of audio inputs (either file paths or numpy arrays,
|
99 |
+
assumed to have sampling rate = 16000).
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
List[str]: List of speaker IDs corresponding to each audio segment.
|
103 |
+
"Speaker_id_0" for child, "Speaker_id_1" for adult.
|
104 |
+
"""
|
105 |
+
if not audio_list:
|
106 |
+
return []
|
107 |
+
|
108 |
+
# Use singleton predictor to avoid reloading model
|
109 |
+
predictor = get_predictor()
|
110 |
+
|
111 |
+
# Get list of 0 (child) or 1 (adult)
|
112 |
+
numeric_labels = predictor.predict(audio_list)
|
113 |
|
114 |
+
# Map to Speaker_id_0 and Speaker_id_1, preserving order
|
115 |
+
speaker_ids = [f"Speaker_id_{label}" if label in (0,1) else "Unknown" for label in numeric_labels]
|
116 |
return speaker_ids
|
117 |
|
118 |
|
test_eval_speaker_identification.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import librosa
|
4 |
+
from speaker.speaker_identification import assign_speaker_for_audio_list
|
5 |
+
|
6 |
+
# Define constants
|
7 |
+
TEST_DATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'Test_data_for_clas_Idef')
|
8 |
+
AUDIO_FILES_DIR = os.path.join(TEST_DATA_DIR, 'enni_audio_files')
|
9 |
+
NUMPY_FILES_DIR = os.path.join(TEST_DATA_DIR, 'enni_testset_numpy_minimal')
|
10 |
+
FILEPATHS_DIR = os.path.join(TEST_DATA_DIR, 'enni_testset_filepaths_minimal')
|
11 |
+
|
12 |
+
def generate_fake_audio_test_set(num_samples=10, length=16000, random_seed=42):
|
13 |
+
"""
|
14 |
+
Generate a synthetic test set of fake audio signals (numpy arrays).
|
15 |
+
Args:
|
16 |
+
num_samples (int): Number of audio samples.
|
17 |
+
length (int): Length of each audio sample (e.g., 1 second at 16kHz).
|
18 |
+
random_seed (int): Seed for reproducibility.
|
19 |
+
Returns:
|
20 |
+
List[np.ndarray]: List of fake audio signals.
|
21 |
+
"""
|
22 |
+
np.random.seed(random_seed)
|
23 |
+
return [np.random.randn(length) for _ in range(num_samples)]
|
24 |
+
|
25 |
+
def test_file_paths():
|
26 |
+
"""Test with all real audio files from the dataset"""
|
27 |
+
# Get file paths using the constant
|
28 |
+
audio_dir = AUDIO_FILES_DIR
|
29 |
+
|
30 |
+
# Get all child and adult files
|
31 |
+
child_files = [
|
32 |
+
os.path.join(audio_dir, file)
|
33 |
+
for file in os.listdir(audio_dir)
|
34 |
+
if file.startswith('child_') and file.endswith('.wav')
|
35 |
+
] # Use all child files
|
36 |
+
|
37 |
+
adult_files = [
|
38 |
+
os.path.join(audio_dir, file)
|
39 |
+
for file in os.listdir(audio_dir)
|
40 |
+
if file.startswith('adult_') and file.endswith('.wav')
|
41 |
+
] # Use all adult files
|
42 |
+
|
43 |
+
# Create list with known order
|
44 |
+
audio_list = child_files + adult_files
|
45 |
+
|
46 |
+
# Get speaker IDs
|
47 |
+
speaker_ids = assign_speaker_for_audio_list(audio_list)
|
48 |
+
|
49 |
+
# Print results
|
50 |
+
print("\n--- Testing with file paths ---")
|
51 |
+
print(f"Testing {len(audio_list)} audio files: {len(child_files)} child files and {len(adult_files)} adult files")
|
52 |
+
|
53 |
+
# Count correct predictions
|
54 |
+
correct = 0
|
55 |
+
for i, (file, speaker_id) in enumerate(zip(audio_list, speaker_ids)):
|
56 |
+
expected = "Speaker_id_0" if "child_" in file else "Speaker_id_1"
|
57 |
+
is_correct = speaker_id == expected
|
58 |
+
correct += 1 if is_correct else 0
|
59 |
+
|
60 |
+
# Print only the first 5 examples to avoid cluttering the output
|
61 |
+
if i < 5:
|
62 |
+
print(f"{i+1}. {os.path.basename(file)}: {speaker_id} (Expected: {expected}) {'✓' if is_correct else '✗'}")
|
63 |
+
|
64 |
+
# Print accuracy
|
65 |
+
accuracy = correct / len(audio_list) * 100 if audio_list else 0
|
66 |
+
print(f"Accuracy: {correct}/{len(audio_list)} ({accuracy:.2f}%)")
|
67 |
+
|
68 |
+
def test_numpy_arrays():
|
69 |
+
"""Test with NumPy arrays by loading all audio files"""
|
70 |
+
# Get file paths using the constant
|
71 |
+
audio_dir = AUDIO_FILES_DIR
|
72 |
+
|
73 |
+
# Load all child and adult files as arrays
|
74 |
+
child_files = [
|
75 |
+
os.path.join(audio_dir, file)
|
76 |
+
for file in os.listdir(audio_dir)
|
77 |
+
if file.startswith('child_') and file.endswith('.wav')
|
78 |
+
]
|
79 |
+
|
80 |
+
adult_files = [
|
81 |
+
os.path.join(audio_dir, file)
|
82 |
+
for file in os.listdir(audio_dir)
|
83 |
+
if file.startswith('adult_') and file.endswith('.wav')
|
84 |
+
]
|
85 |
+
|
86 |
+
# Load as arrays
|
87 |
+
child_arrays = [librosa.load(f, sr=16000)[0] for f in child_files]
|
88 |
+
adult_arrays = [librosa.load(f, sr=16000)[0] for f in adult_files]
|
89 |
+
|
90 |
+
# Create list with known order
|
91 |
+
audio_list = child_arrays + adult_arrays
|
92 |
+
filenames = [os.path.basename(f) for f in child_files + adult_files]
|
93 |
+
|
94 |
+
# Get speaker IDs
|
95 |
+
speaker_ids = assign_speaker_for_audio_list(audio_list)
|
96 |
+
|
97 |
+
# Print results
|
98 |
+
print("\n--- Testing with NumPy arrays ---")
|
99 |
+
print(f"Testing {len(audio_list)} audio arrays: {len(child_arrays)} child arrays and {len(adult_arrays)} adult arrays")
|
100 |
+
|
101 |
+
# Count correct predictions
|
102 |
+
correct = 0
|
103 |
+
for i, (filename, speaker_id) in enumerate(zip(filenames, speaker_ids)):
|
104 |
+
expected = "Speaker_id_0" if "child_" in filename else "Speaker_id_1"
|
105 |
+
is_correct = speaker_id == expected
|
106 |
+
correct += 1 if is_correct else 0
|
107 |
+
|
108 |
+
# Print only the first 5 examples to avoid cluttering the output
|
109 |
+
if i < 5:
|
110 |
+
print(f"{i+1}. {filename} (as array): {speaker_id} (Expected: {expected}) {'✓' if is_correct else '✗'}")
|
111 |
+
|
112 |
+
# Print accuracy
|
113 |
+
accuracy = correct / len(audio_list) * 100 if audio_list else 0
|
114 |
+
print(f"Accuracy: {correct}/{len(audio_list)} ({accuracy:.2f}%)")
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
# Test with synthetic data
|
118 |
+
print("--- Testing with synthetic data ---")
|
119 |
+
audio_list = generate_fake_audio_test_set(num_samples=5)
|
120 |
+
speaker_ids = assign_speaker_for_audio_list(audio_list)
|
121 |
+
print(f"Synthetic data predictions: {speaker_ids}")
|
122 |
+
|
123 |
+
# Test with real files
|
124 |
+
try:
|
125 |
+
test_file_paths()
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Error testing file paths: {e}")
|
128 |
+
|
129 |
+
# Test with NumPy arrays
|
130 |
+
try:
|
131 |
+
test_numpy_arrays()
|
132 |
+
except Exception as e:
|
133 |
+
print(f"Error testing NumPy arrays: {e}")
|