Spaces:
Running
Running
File size: 15,475 Bytes
f1996dd e057fa4 d0b423f 982eaf5 0253cad 971b317 3cd8625 86ba735 e057fa4 e3bc0c6 220b45d 3cd8625 220b45d 5361f7d 3cd8625 971b317 3cd8625 971b317 3cd8625 e3bc0c6 f1996dd 220b45d e851339 3cd8625 86ba735 3cd8625 58a3898 3cd8625 f8fae95 0253cad 3cd8625 f1996dd 220b45d e057fa4 3cd8625 86ba735 3cd8625 971b317 e057fa4 274798e e057fa4 be2e6ae 274798e e057fa4 be2e6ae 274798e be2e6ae 274798e be2e6ae 274798e 971b317 86ba735 e057fa4 86ba735 e057fa4 86ba735 274798e 86ba735 274798e 3cd8625 982eaf5 274798e e057fa4 3cd8625 86ba735 971b317 3cd8625 274798e 3cd8625 86ba735 971b317 86ba735 971b317 3cd8625 86ba735 220b45d 3cd8625 86ba735 be2e6ae e057fa4 be2e6ae d5d1102 e057fa4 be2e6ae 982eaf5 be2e6ae e057fa4 d5d1102 86ba735 e057fa4 86ba735 e057fa4 982eaf5 e057fa4 982eaf5 220b45d e057fa4 d5d1102 e057fa4 220b45d e057fa4 982eaf5 e057fa4 982eaf5 220b45d e057fa4 220b45d 982eaf5 e057fa4 982eaf5 e057fa4 982eaf5 d5d1102 e057fa4 982eaf5 e057fa4 982eaf5 e057fa4 982eaf5 e057fa4 982eaf5 e057fa4 220b45d 982eaf5 3cd8625 220b45d 3cd8625 2567893 86ba735 3cd8625 971b317 3cd8625 0253cad 971b317 e851339 971b317 3cd8625 e851339 3cd8625 e851339 3cd8625 971b317 e851339 220b45d 971b317 3cd8625 e851339 971b317 e057fa4 982eaf5 971b317 3cd8625 971b317 e057fa4 e851339 220b45d 971b317 3cd8625 86ba735 3cd8625 971b317 86ba735 982eaf5 e057fa4 982eaf5 be2e6ae e057fa4 982eaf5 971b317 3cd8625 971b317 86ba735 e057fa4 971b317 220b45d 3cd8625 2e2b7f9 3cd8625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import os
import base64
import gradio as gr
from mistralai import Mistral, ImageURLChunk
from mistralai.models import OCRResponse
from typing import Union, List, Tuple
import requests
import shutil
import time
import pymupdf as fitz
import logging
from tenacity import retry, stop_after_attempt, wait_exponential
from concurrent.futures import ThreadPoolExecutor
import socket
from requests.exceptions import ConnectionError, Timeout
# Constants
SUPPORTED_IMAGE_TYPES = [".jpg", ".png", ".jpeg"]
SUPPORTED_PDF_TYPES = [".pdf"]
UPLOAD_FOLDER = "./uploads"
MAX_FILE_SIZE = 50 * 1024 * 1024 # 50MB
MAX_PDF_PAGES = 50
# Configuration
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
class OCRProcessor:
def __init__(self, api_key: str):
if not api_key or not isinstance(api_key, str):
raise ValueError("Valid API key must be provided")
self.client = Mistral(api_key=api_key)
self._validate_client()
def _validate_client(self) -> None:
try:
models = self.client.models.list()
if not models:
raise ValueError("No models available")
except Exception as e:
raise ValueError(f"API key validation failed: {str(e)}")
@staticmethod
def _check_file_size(file_input: Union[str, bytes]) -> None:
if isinstance(file_input, str) and os.path.exists(file_input):
size = os.path.getsize(file_input)
elif hasattr(file_input, 'read'):
size = len(file_input.read())
file_input.seek(0)
else:
size = len(file_input)
if size > MAX_FILE_SIZE:
raise ValueError(f"File size exceeds {MAX_FILE_SIZE/1024/1024}MB limit")
@staticmethod
def _save_uploaded_file(file_input: Union[str, bytes], filename: str) -> str:
clean_filename = os.path.basename(filename).replace(os.sep, "_")
file_path = os.path.join(UPLOAD_FOLDER, f"{int(time.time())}_{clean_filename}")
try:
if isinstance(file_input, str) and file_input.startswith("http"):
logger.info(f"Downloading from URL: {file_input}")
response = requests.get(file_input, timeout=30)
response.raise_for_status()
with open(file_path, 'wb') as f:
f.write(response.content)
elif isinstance(file_input, str) and os.path.exists(file_input):
logger.info(f"Copying local file: {file_input}")
shutil.copy2(file_input, file_path)
else:
logger.info(f"Saving file object: {filename}")
with open(file_path, 'wb') as f:
if hasattr(file_input, 'read'):
shutil.copyfileobj(file_input, f)
else:
f.write(file_input)
if not os.path.exists(file_path):
raise FileNotFoundError(f"Failed to save file at {file_path}")
logger.info(f"File saved to: {file_path}")
return file_path
except Exception as e:
logger.error(f"Error saving file {filename}: {str(e)}")
raise
@staticmethod
def _encode_image(image_path: str) -> str:
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
except Exception as e:
logger.error(f"Error encoding image {image_path}: {str(e)}")
raise ValueError("Failed to encode image")
@staticmethod
def _pdf_to_images(pdf_path: str) -> List[Tuple[str, str]]:
try:
pdf_document = fitz.open(pdf_path)
if pdf_document.page_count > MAX_PDF_PAGES:
pdf_document.close()
raise ValueError(f"PDF exceeds maximum page limit of {MAX_PDF_PAGES}")
with ThreadPoolExecutor() as executor:
image_data = list(executor.map(
lambda i: OCRProcessor._convert_page(pdf_path, i),
range(pdf_document.page_count)
))
pdf_document.close()
return [data for data in image_data if data]
except Exception as e:
logger.error(f"Error converting PDF to images: {str(e)}")
return []
@staticmethod
def _convert_page(pdf_path: str, page_num: int) -> Tuple[str, str]:
try:
pdf_document = fitz.open(pdf_path)
page = pdf_document[page_num]
pix = page.get_pixmap(dpi=150)
image_path = os.path.join(UPLOAD_FOLDER, f"page_{page_num + 1}_{int(time.time())}.png")
pix.save(image_path)
encoded = OCRProcessor._encode_image(image_path)
pdf_document.close()
return image_path, encoded
except Exception as e:
logger.error(f"Error converting page {page_num}: {str(e)}")
return None, None
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
def _call_ocr_api(self, encoded_image: str) -> OCRResponse:
base64_url = f"data:image/png;base64,{encoded_image}"
try:
logger.info("Calling OCR API")
response = self.client.ocr.process(
model="mistral-ocr-latest",
document=ImageURLChunk(image_url=base64_url),
include_image_base64=True
)
logger.info("OCR API call successful")
return response
except (ConnectionError, Timeout, socket.error) as e:
logger.error(f"Network error during OCR API call: {str(e)}")
raise
def ocr_uploaded_pdf(self, pdf_file: Union[str, bytes]) -> Tuple[str, List[str]]:
file_name = getattr(pdf_file, 'name', f"pdf_{int(time.time())}.pdf")
logger.info(f"Processing uploaded PDF: {file_name}")
try:
self._check_file_size(pdf_file)
pdf_path = self._save_uploaded_file(pdf_file, file_name)
if not os.path.exists(pdf_path):
raise FileNotFoundError(f"Saved PDF not found at: {pdf_path}")
image_data = self._pdf_to_images(pdf_path)
if not image_data:
raise ValueError("No pages converted from PDF")
ocr_results = []
image_paths = [path for path, _ in image_data]
for i, (_, encoded) in enumerate(image_data):
response = self._call_ocr_api(encoded)
markdown_with_images = self._get_combined_markdown_with_images(response, image_paths, i)
ocr_results.append(markdown_with_images)
return "\n\n".join(ocr_results), image_paths
except Exception as e:
return self._handle_error("uploaded PDF processing", e), []
def ocr_pdf_url(self, pdf_url: str) -> Tuple[str, List[str]]:
logger.info(f"Processing PDF URL: {pdf_url}")
try:
file_name = pdf_url.split('/')[-1] or f"pdf_{int(time.time())}.pdf"
pdf_path = self._save_uploaded_file(pdf_url, file_name)
if not os.path.exists(pdf_path):
raise FileNotFoundError(f"Saved PDF not found at: {pdf_path}")
image_data = self._pdf_to_images(pdf_path)
if not image_data:
raise ValueError("No pages converted from PDF")
ocr_results = []
image_paths = [path for path, _ in image_data]
for i, (_, encoded) in enumerate(image_data):
response = self._call_ocr_api(encoded)
markdown_with_images = self._get_combined_markdown_with_images(response, image_paths, i)
ocr_results.append(markdown_with_images)
return "\n\n".join(ocr_results), image_paths
except Exception as e:
return self._handle_error("PDF URL processing", e), []
def ocr_uploaded_image(self, image_file: Union[str, bytes]) -> Tuple[str, str]:
file_name = getattr(image_file, 'name', f"image_{int(time.time())}.jpg")
logger.info(f"Processing uploaded image: {file_name}")
try:
self._check_file_size(image_file)
image_path = self._save_uploaded_file(image_file, file_name)
encoded_image = self._encode_image(image_path)
response = self._call_ocr_api(encoded_image)
return self._get_combined_markdown_with_images(response), image_path
except Exception as e:
return self._handle_error("image processing", e), None
@staticmethod
def _get_combined_markdown_with_images(response: OCRResponse, image_paths: List[str] = None, page_index: int = None) -> str:
markdown_parts = []
for i, page in enumerate(response.pages):
if page.markdown.strip():
markdown = page.markdown
logger.info(f"Page {i} markdown: {markdown}")
if hasattr(page, 'images') and page.images:
logger.info(f"Found {len(page.images)} images in page {i}")
for img in page.images:
if img.image_base64:
logger.info(f"Replacing image {img.id} with base64")
markdown = markdown.replace(
f"",
f""
)
else:
logger.warning(f"No base64 data for image {img.id}")
if image_paths and page_index is not None and page_index < len(image_paths):
local_encoded = OCRProcessor._encode_image(image_paths[page_index])
markdown = markdown.replace(
f"",
f""
)
else:
logger.warning(f"No images found in page {i}")
# Replace known placeholders or append the local image
if image_paths and page_index is not None and page_index < len(image_paths):
local_encoded = OCRProcessor._encode_image(image_paths[page_index])
# Replace placeholders like img-0.jpeg
placeholder = f"img-{i}.jpeg"
if placeholder in markdown:
markdown = markdown.replace(
placeholder,
f""
)
else:
# Append the image if no placeholder is found
markdown += f"\n\n"
markdown_parts.append(markdown)
return "\n\n".join(markdown_parts) or "No text or images detected"
@staticmethod
def _handle_error(context: str, error: Exception) -> str:
logger.error(f"Error in {context}: {str(error)}")
return f"**Error in {context}:** {str(error)}"
def create_interface():
css = """
.output-markdown {font-size: 14px; max-height: 500px; overflow-y: auto;}
.status {color: #666; font-style: italic;}
"""
with gr.Blocks(title="Mistral OCR Demo", css=css) as demo:
gr.Markdown("# Mistral OCR App\nUpload images or PDFs, or provide a PDF URL for OCR processing")
with gr.Row():
api_key = gr.Textbox(label="Mistral API Key", type="password", placeholder="Enter your API key")
set_key_btn = gr.Button("Set API Key", variant="primary")
processor_state = gr.State()
status = gr.Markdown("Please enter API key", elem_classes="status")
def init_processor(key):
try:
processor = OCRProcessor(key)
return processor, "✅ API key validated successfully"
except Exception as e:
return None, f"❌ Error: {str(e)}"
set_key_btn.click(
fn=init_processor,
inputs=api_key,
outputs=[processor_state, status]
)
with gr.Tab("Image OCR"):
with gr.Row():
image_input = gr.File(
label=f"Upload Image (max {MAX_FILE_SIZE/1024/1024}MB)",
file_types=SUPPORTED_IMAGE_TYPES
)
image_preview = gr.Image(label="Preview", height=300)
image_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
process_image_btn = gr.Button("Process Image", variant="primary")
def process_image(processor, image):
if not processor or not image:
return "Please set API key and upload an image", None
return processor.ocr_uploaded_image(image)
process_image_btn.click(
fn=process_image,
inputs=[processor_state, image_input],
outputs=[image_output, image_preview]
)
with gr.Tab("PDF OCR"):
with gr.Row():
with gr.Column():
pdf_input = gr.File(
label=f"Upload PDF (max {MAX_FILE_SIZE/1024/1024}MB, {MAX_PDF_PAGES} pages)",
file_types=SUPPORTED_PDF_TYPES
)
pdf_url_input = gr.Textbox(
label="Or Enter PDF URL",
placeholder="e.g., https://arxiv.org/pdf/2201.04234.pdf"
)
pdf_gallery = gr.Gallery(label="PDF Pages", height=300)
pdf_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
process_pdf_btn = gr.Button("Process PDF", variant="primary")
def process_pdf(processor, pdf_file, pdf_url):
if not processor:
return "Please set API key first", []
logger.info(f"Received inputs - PDF file: {pdf_file}, PDF URL: {pdf_url}")
if pdf_file is not None and hasattr(pdf_file, 'name'):
logger.info(f"Processing as uploaded PDF: {pdf_file.name}")
return processor.ocr_uploaded_pdf(pdf_file)
elif pdf_url and pdf_url.strip():
logger.info(f"Processing as PDF URL: {pdf_url}")
return processor.ocr_pdf_url(pdf_url)
return "Please upload a PDF or provide a valid URL", []
process_pdf_btn.click(
fn=process_pdf,
inputs=[processor_state, pdf_input, pdf_url_input],
outputs=[pdf_output, pdf_gallery]
)
return demo
if __name__ == "__main__":
os.environ['START_TIME'] = time.strftime('%Y-%m-%d %H:%M:%S')
print(f"===== Application Startup at {os.environ['START_TIME']} =====")
create_interface().launch(
share=True,
) |