Spaces:
Running
Running
File size: 15,608 Bytes
f1996dd f8fae95 d0b423f e3bc0c6 0253cad e3bc0c6 e851339 220b45d 0253cad 971b317 e3bc0c6 220b45d 971b317 220b45d e3bc0c6 f1996dd 220b45d e851339 220b45d 58a3898 f8fae95 0253cad 58a3898 f1996dd 220b45d 971b317 220b45d 971b317 220b45d 468fb8d 220b45d 971b317 220b45d 0253cad f8fae95 58a3898 f8fae95 0253cad 58a3898 220b45d 0253cad 220b45d 58a3898 0253cad 58a3898 220b45d 005a056 0253cad 005a056 96d9245 971b317 220b45d 971b317 f8fae95 971b317 220b45d 971b317 220b45d 971b317 220b45d 971b317 220b45d 971b317 220b45d 971b317 220b45d 971b317 f8fae95 971b317 220b45d 971b317 220b45d f8fae95 220b45d 971b317 220b45d f8fae95 220b45d f8fae95 220b45d f8fae95 220b45d 971b317 220b45d f8fae95 220b45d 971b317 f8fae95 0253cad 220b45d f8fae95 220b45d f8fae95 220b45d 971b317 0253cad 971b317 e851339 971b317 e851339 971b317 e851339 971b317 e851339 220b45d 971b317 e851339 971b317 e851339 220b45d 971b317 220b45d 2e2b7f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import os
import base64
import gradio as gr
from mistralai import Mistral, DocumentURLChunk, ImageURLChunk, TextChunk
from mistralai.models import OCRResponse
from pathlib import Path
import pycountry
import json
import logging
from tenacity import retry, stop_after_attempt, wait_fixed
import tempfile
from typing import Union, Dict, List
from contextlib import contextmanager
import requests
import shutil
# Constants
DEFAULT_LANGUAGE = "English"
SUPPORTED_IMAGE_TYPES = [".jpg", ".png"]
SUPPORTED_PDF_TYPES = [".pdf"]
TEMP_FILE_EXPIRY = 7200 # 2 hours in seconds
UPLOAD_FOLDER = "uploads" # Local storage folder
# Create upload folder if it doesn't exist
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class OCRProcessor:
def __init__(self, api_key: str):
if not api_key:
raise ValueError("API key must be provided")
self.api_key = api_key
self.client = Mistral(api_key=self.api_key)
try:
models = self.client.models.list() # Validate API key
if not models:
raise ValueError("No models available")
except Exception as e:
raise ValueError(f"Invalid API key: {str(e)}")
@staticmethod
def _encode_image(image_path: str) -> str:
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
except FileNotFoundError:
logger.error(f"Error: The file {image_path} was not found.")
return None
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
return None
@staticmethod
def _save_uploaded_file(file_input: Union[str, bytes], filename: str) -> str:
"""Save uploaded file to local storage and return path"""
file_path = os.path.join(UPLOAD_FOLDER, filename)
try:
if isinstance(file_input, str):
if file_input.startswith("http"):
response = requests.get(file_input)
response.raise_for_status()
with open(file_path, 'wb') as f:
f.write(response.content)
else:
# Copy file to new location if source and destination are different
if os.path.abspath(file_input) != os.path.abspath(file_path):
shutil.copy2(file_input, file_path)
else:
return file_input # Return original path if same file
else:
with open(file_path, 'wb') as f:
if hasattr(file_input, 'read'):
shutil.copyfileobj(file_input, f)
else:
f.write(file_input)
return file_path
except Exception as e:
logger.error(f"Error saving file: {str(e)}")
return None
@staticmethod
def _pdf_to_images(pdf_path: str) -> List[str]:
"""Convert PDF pages to images and return their paths"""
image_paths = []
try:
pdf_document = fitz.open(pdf_path)
for page_num in range(pdf_document.page_count):
page = pdf_document[page_num]
pix = page.get_pixmap()
image_path = os.path.join(UPLOAD_FOLDER, f"page_{page_num + 1}.png")
pix.save(image_path)
image_paths.append(image_path)
pdf_document.close()
return image_paths
except Exception as e:
logger.error(f"Error converting PDF to images: {str(e)}")
return []
@staticmethod
@contextmanager
def _temp_file(content: bytes, suffix: str) -> str:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
try:
temp_file.write(content)
temp_file.close()
yield temp_file.name
finally:
if os.path.exists(temp_file.name):
os.unlink(temp_file.name)
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def _call_ocr_api(self, document: Union[DocumentURLChunk, ImageURLChunk]) -> OCRResponse:
try:
return self.client.ocr.process(model="mistral-ocr-latest", document=document, include_image_base64=True)
except Exception as e:
logger.error(f"OCR API call failed: {str(e)}")
raise
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def _call_chat_complete(self, model: str, messages: List[Dict], **kwargs) -> Dict:
try:
return self.client.chat.complete(model=model, messages=messages, **kwargs)
except Exception as e:
logger.error(f"Chat complete API call failed: {str(e)}")
raise
def _get_file_content(self, file_input: Union[str, bytes]) -> bytes:
if isinstance(file_input, str):
if file_input.startswith("http"):
response = requests.get(file_input)
response.raise_for_status()
return response.content
else:
with open(file_input, "rb") as f:
return f.read()
return file_input.read() if hasattr(file_input, 'read') else file_input
def ocr_pdf_url(self, pdf_url: str) -> tuple[str, List[str]]:
logger.info(f"Processing PDF URL: {pdf_url}")
try:
# Download and save PDF
response = requests.get(pdf_url)
response.raise_for_status()
filename = pdf_url.split('/')[-1]
pdf_path = self._save_uploaded_file(response.content, filename)
if not pdf_path:
return self._handle_error("PDF saving", Exception("Failed to save PDF")), []
# Convert PDF to images for visualization
image_paths = self._pdf_to_images(pdf_path)
# Process with OCR
response = self._call_ocr_api(DocumentURLChunk(document_url=pdf_url))
return self._get_combined_markdown(response), image_paths
except Exception as e:
return self._handle_error("PDF URL processing", e), []
def ocr_uploaded_pdf(self, pdf_file: Union[str, bytes]) -> tuple[str, List[str]]:
file_name = getattr(pdf_file, 'name', 'unknown')
logger.info(f"Processing uploaded PDF: {file_name}")
try:
# Save uploaded PDF
pdf_path = self._save_uploaded_file(pdf_file, file_name)
if not pdf_path:
return self._handle_error("PDF saving", Exception("Failed to save PDF")), []
# Convert PDF to images for visualization
image_paths = self._pdf_to_images(pdf_path)
# Process with OCR
uploaded_file = self.client.files.upload(
file={"file_name": pdf_path, "content": open(pdf_path, "rb")},
purpose="ocr"
)
signed_url = self.client.files.get_signed_url(file_id=uploaded_file.id, expiry=TEMP_FILE_EXPIRY)
response = self._call_ocr_api(DocumentURLChunk(document_url=signed_url.url))
return self._get_combined_markdown(response), image_paths
except Exception as e:
return self._handle_error("uploaded PDF processing", e), []
def ocr_image_url(self, image_url: str) -> tuple[str, str]:
logger.info(f"Processing image URL: {image_url}")
try:
# Download and save image
response = requests.get(image_url)
response.raise_for_status()
filename = image_url.split('/')[-1]
image_path = self._save_uploaded_file(response.content, filename)
if not image_path:
return self._handle_error("image saving", Exception("Failed to save image")), None
# Process with OCR
response = self._call_ocr_api(ImageURLChunk(image_url=image_url))
return self._get_combined_markdown(response), image_path
except Exception as e:
return self._handle_error("image URL processing", e), None
def ocr_uploaded_image(self, image_file: Union[str, bytes]) -> tuple[str, str]:
file_name = getattr(image_file, 'name', 'unknown')
logger.info(f"Processing uploaded image: {file_name}")
try:
# Save uploaded image
image_path = self._save_uploaded_file(image_file, file_name)
if not image_path:
return self._handle_error("image saving", Exception("Failed to save image")), None
# Process with OCR
encoded_image = self._encode_image(image_path)
if encoded_image is None:
return self._handle_error("image encoding", Exception("Failed to encode image")), None
base64_url = f"data:image/jpeg;base64,{encoded_image}"
response = self._call_ocr_api(ImageURLChunk(image_url=base64_url))
return self._get_combined_markdown(response), image_path
except Exception as e:
return self._handle_error("uploaded image processing", e), None
def document_understanding(self, doc_url: str, question: str) -> str:
logger.info(f"Document understanding - URL: {doc_url}, Question: {question}")
try:
messages = [{"role": "user", "content": [
TextChunk(text=question),
DocumentURLChunk(document_url=doc_url)
]}]
response = self._call_chat_complete(model="mistral-small-latest", messages=messages)
return response.choices[0].message.content if response.choices else "No response received"
except Exception as e:
return self._handle_error("document understanding", e)
def structured_ocr(self, image_file: Union[str, bytes]) -> tuple[str, str]:
file_name = getattr(image_file, 'name', 'unknown')
logger.info(f"Processing structured OCR for: {file_name}")
try:
# Save uploaded image
image_path = self._save_uploaded_file(image_file, file_name)
if not image_path:
return self._handle_error("image saving", Exception("Failed to save image")), None
encoded_image = self._encode_image(image_path)
if encoded_image is None:
return self._handle_error("image encoding", Exception("Failed to encode image")), None
base64_url = f"data:image/jpeg;base64,{encoded_image}"
ocr_response = self._call_ocr_api(ImageURLChunk(image_url=base64_url))
markdown = self._get_combined_markdown(ocr_response)
chat_response = self._call_chat_complete(
model="pixtral-12b-latest",
messages=[{
"role": "user",
"content": [
ImageURLChunk(image_url=base64_url),
TextChunk(text=(
f"This is image's OCR in markdown:\n<BEGIN_IMAGE_OCR>\n{markdown}\n<END_IMAGE_OCR>.\n"
"Convert this into a sensible structured json response with file_name, topics, languages, and ocr_contents fields"
))
]
}],
response_format={"type": "json_object"},
temperature=0
)
response_content = chat_response.choices[0].message.content
content = json.loads(response_content)
return self._format_structured_response(image_path, content), image_path
except Exception as e:
return self._handle_error("structured OCR", e), None
def _get_combined_markdown(self, response: OCRResponse) -> str:
markdowns = []
for page in response.pages:
image_data = {}
for img in page.images:
image_data[img.id] = img.image_base64
markdown = page.markdown
for img_name, base64_str in image_data.items():
markdown = markdown.replace(f"", f"")
markdowns.append(markdown)
return "\n\n".join(markdowns)
@staticmethod
def _handle_error(context: str, error: Exception) -> str:
logger.error(f"Error in {context}: {str(error)}")
return f"**Error:** {str(error)}"
@staticmethod
def _format_structured_response(file_path: str, content: Dict) -> str:
languages = {lang.alpha_2: lang.name for lang in pycountry.languages if hasattr(lang, 'alpha_2')}
# Handle languages as a list instead of using .get()
content_languages = content["languages"] if "languages" in content else [DEFAULT_LANGUAGE]
valid_langs = [l for l in content_languages if l in languages.values()]
response = {
"file_name": Path(file_path).name,
"topics": content["topics"] if "topics" in content else [],
"languages": valid_langs or [DEFAULT_LANGUAGE],
"ocr_contents": content["ocr_contents"] if "ocr_contents" in content else {}
}
return f"```json\n{json.dumps(response, indent=4)}\n```"
def create_interface():
with gr.Blocks(title="Mistral OCR App") as demo:
gr.Markdown("# Mistral OCR App")
api_key = gr.Textbox(label="API Key", type="password")
processor_state = gr.State()
status = gr.Markdown()
def init_processor(key):
try:
processor = OCRProcessor(key)
return processor, "API key validated!"
except Exception as e:
return None, f"Error: {str(e)}"
gr.Button("Set API Key").click(
fn=init_processor,
inputs=api_key,
outputs=[processor_state, status]
)
with gr.Tab("Image OCR"):
image_input = gr.File(label="Upload Image", file_types=SUPPORTED_IMAGE_TYPES)
image_preview = gr.Image(label="Image Preview")
image_output = gr.Markdown()
def process_image(processor, image):
if not processor:
return "Please set API key first", None
ocr_result, image_path = processor.ocr_uploaded_image(image)
return ocr_result, image_path
gr.Button("Process Image").click(
fn=process_image,
inputs=[processor_state, image_input],
outputs=[image_output, image_preview]
)
with gr.Tab("PDF OCR"):
pdf_input = gr.File(label="Upload PDF", file_types=SUPPORTED_PDF_TYPES)
pdf_gallery = gr.Gallery(label="PDF Pages")
pdf_output = gr.Markdown()
def process_pdf(processor, pdf):
if not processor:
return "Please set API key first", None
ocr_result, image_paths = processor.ocr_uploaded_pdf(pdf)
return ocr_result, image_paths
gr.Button("Process PDF").click(
fn=process_pdf,
inputs=[processor_state, pdf_input],
outputs=[pdf_output, pdf_gallery]
)
return demo
if __name__ == "__main__":
print(f"===== Application Startup at {os.environ.get('START_TIME', 'Unknown')} =====")
create_interface().launch(share=True, debug=True) |