File size: 12,251 Bytes
f1996dd
 
 
 
d0b423f
 
 
 
 
 
e3bc0c6
 
 
 
 
 
 
f1996dd
 
 
 
e3bc0c6
f1996dd
 
 
 
 
 
 
 
e3bc0c6
f1996dd
 
e3bc0c6
 
 
 
 
 
 
 
 
468fb8d
 
 
 
 
 
 
 
f1996dd
 
e3bc0c6
f1996dd
e3bc0c6
 
 
 
 
 
 
f1996dd
e3bc0c6
fd84b98
f1996dd
 
 
468fb8d
e3bc0c6
f1996dd
468fb8d
 
e3bc0c6
 
468fb8d
e3bc0c6
f1996dd
e3bc0c6
f1996dd
 
468fb8d
e3bc0c6
 
 
 
 
 
fd84b98
f1996dd
e3bc0c6
fd84b98
e3bc0c6
 
 
f1996dd
 
 
e3bc0c6
f1996dd
e3bc0c6
 
 
 
 
 
fd84b98
f1996dd
e3bc0c6
fd84b98
f1996dd
 
 
468fb8d
e3bc0c6
f1996dd
468fb8d
 
e3bc0c6
468fb8d
e3bc0c6
 
 
 
 
 
 
 
 
 
 
fd84b98
f1996dd
e3bc0c6
fd84b98
e3bc0c6
 
 
f1996dd
 
 
e3bc0c6
f1996dd
 
d0b423f
 
 
 
f1996dd
e3bc0c6
 
 
 
 
 
 
f1996dd
e3bc0c6
fd84b98
f1996dd
d0b423f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468fb8d
e3bc0c6
d0b423f
468fb8d
 
e3bc0c6
468fb8d
e3bc0c6
 
 
d0b423f
e3bc0c6
d0b423f
 
e3bc0c6
 
 
 
 
d0b423f
e3bc0c6
d0b423f
 
 
 
 
 
 
 
 
 
 
 
 
 
e3bc0c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd84b98
d0b423f
e3bc0c6
fd84b98
e3bc0c6
 
 
d0b423f
f1996dd
d0b423f
 
e3bc0c6
f1996dd
 
 
e3bc0c6
f1996dd
 
 
 
 
e3bc0c6
f1996dd
 
 
 
 
e3bc0c6
f1996dd
 
 
 
 
e3bc0c6
f1996dd
 
 
 
 
 
e3bc0c6
f1996dd
 
 
d0b423f
 
e3bc0c6
d0b423f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import base64
import gradio as gr
from mistralai import Mistral
from mistralai.models import OCRResponse
from pathlib import Path
from enum import Enum
from pydantic import BaseModel
import pycountry
import json
import logging
from tenacity import retry, stop_after_attempt, wait_fixed
import tempfile

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize Mistral client with API key
api_key = os.environ.get("MISTRAL_API_KEY")
if not api_key:
    raise ValueError("MISTRAL_API_KEY environment variable is not set. Please configure it.")
client = Mistral(api_key=api_key)

# Helper function to encode image to base64
def encode_image(image_path):
    try:
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')
    except Exception as e:
        logger.error(f"Error encoding image {image_path}: {str(e)}")
        return f"Error encoding image: {str(e)}"

# Retry-enabled API call helpers
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def call_ocr_api(document):
    return client.ocr.process(model="mistral-ocr-latest", document=document)

@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def call_chat_complete(model, messages, **kwargs):
    return client.chat.complete(model=model, messages=messages, **kwargs)

# Helper function to get file content (handles both string paths and file-like objects)
def get_file_content(file_input):
    if isinstance(file_input, str):  # Gradio 3.x: file path
        with open(file_input, "rb") as f:
            return f.read()
    else:  # Gradio 4.x or file-like object
        return file_input.read()

# OCR with PDF URL
def ocr_pdf_url(pdf_url):
    logger.info(f"Processing PDF URL: {pdf_url}")
    try:
        ocr_response = call_ocr_api({"type": "document_url", "document_url": pdf_url})
        try:
            markdown = ocr_response.pages[0].markdown
        except (IndexError, AttributeError):
            markdown = "No text extracted or response invalid."
        logger.info("Successfully processed PDF URL")
        return markdown
    except Exception as e:
        logger.error(f"Error processing PDF URL: {str(e)}")
        return f"**Error:** {str(e)}"

# OCR with Uploaded PDF
def ocr_uploaded_pdf(pdf_file):
    logger.info(f"Processing uploaded PDF: {getattr(pdf_file, 'name', 'unknown')}")
    temp_path = None
    try:
        # Get file content (handles both string and file-like objects)
        content = get_file_content(pdf_file)
        # Use tempfile to handle uploaded file securely
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
            temp_file.write(content)
            temp_path = temp_file.name
        uploaded_pdf = client.files.upload(
            file={"file_name": temp_path, "content": open(temp_path, "rb")},
            purpose="ocr"
        )
        signed_url = client.files.get_signed_url(file_id=uploaded_pdf.id, expiry=7200)  # 2 hours
        ocr_response = call_ocr_api({"type": "document_url", "document_url": signed_url.url})
        try:
            markdown = ocr_response.pages[0].markdown
        except (IndexError, AttributeError):
            markdown = "No text extracted or response invalid."
        logger.info("Successfully processed uploaded PDF")
        return markdown
    except Exception as e:
        logger.error(f"Error processing uploaded PDF: {str(e)}")
        return f"**Error:** {str(e)}"
    finally:
        if temp_path and os.path.exists(temp_path):
            os.remove(temp_path)

# OCR with Image URL
def ocr_image_url(image_url):
    logger.info(f"Processing image URL: {image_url}")
    try:
        ocr_response = call_ocr_api({"type": "image_url", "image_url": image_url})
        try:
            markdown = ocr_response.pages[0].markdown
        except (IndexError, AttributeError):
            markdown = "No text extracted or response invalid."
        logger.info("Successfully processed image URL")
        return markdown
    except Exception as e:
        logger.error(f"Error processing image URL: {str(e)}")
        return f"**Error:** {str(e)}"

# OCR with Uploaded Image
def ocr_uploaded_image(image_file):
    logger.info(f"Processing uploaded image: {getattr(image_file, 'name', 'unknown')}")
    temp_path = None
    try:
        # Get file content (handles both string and file-like objects)
        content = get_file_content(image_file)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
            temp_file.write(content)
            temp_path = temp_file.name
        encoded_image = encode_image(temp_path)
        if "Error" in encoded_image:
            raise ValueError(encoded_image)
        base64_data_url = f"data:image/jpeg;base64,{encoded_image}"
        ocr_response = call_ocr_api({"type": "image_url", "image_url": base64_data_url})
        try:
            markdown = ocr_response.pages[0].markdown
        except (IndexError, AttributeError):
            markdown = "No text extracted or response invalid."
        logger.info("Successfully processed uploaded image")
        return markdown
    except Exception as e:
        logger.error(f"Error processing uploaded image: {str(e)}")
        return f"**Error:** {str(e)}"
    finally:
        if temp_path and os.path.exists(temp_path):
            os.remove(temp_path)

# Document Understanding
def document_understanding(doc_url, question):
    logger.info(f"Processing document understanding - URL: {doc_url}, Question: {question}")
    try:
        messages = [
            {"role": "user", "content": [
                {"type": "text", "text": question},
                {"type": "document_url", "document_url": doc_url}
            ]}
        ]
        chat_response = call_chat_complete(model="mistral-small-latest", messages=messages)
        try:
            content = chat_response.choices[0].message.content
        except (IndexError, AttributeError):
            content = "No response received from the API."
        logger.info("Successfully processed document understanding")
        return content
    except Exception as e:
        logger.error(f"Error in document understanding: {str(e)}")
        return f"**Error:** {str(e)}"

# Structured OCR Setup
languages = {lang.alpha_2: lang.name for lang in pycountry.languages if hasattr(lang, 'alpha_2')}

class LanguageMeta(Enum.__class__):
    def __new__(metacls, cls, bases, classdict):
        for code, name in languages.items():
            classdict[name.upper().replace(' ', '_')] = name
        return super().__new__(metacls, cls, bases, classdict)

class Language(Enum, metaclass=LanguageMeta):
    pass

class StructuredOCR(BaseModel):
    file_name: str
    topics: list[str]
    languages: list[Language]
    ocr_contents: dict

def structured_ocr(image_file):
    logger.info(f"Processing structured OCR for image: {getattr(image_file, 'name', 'unknown')}")
    temp_path = None
    try:
        # Get file content (handles both string and file-like objects)
        content = get_file_content(image_file)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
            temp_file.write(content)
            temp_path = temp_file.name
        image_path = Path(temp_path)
        encoded_image = encode_image(temp_path)
        if "Error" in encoded_image:
            raise ValueError(encoded_image)
        base64_data_url = f"data:image/jpeg;base64,{encoded_image}"

        image_response = call_ocr_api({"type": "image_url", "image_url": base64_data_url})
        try:
            image_ocr_markdown = image_response.pages[0].markdown
        except (IndexError, AttributeError):
            image_ocr_markdown = "No text extracted."

        chat_response = call_chat_complete(
            model="pixtral-12b-latest",
            messages=[{
                "role": "user",
                "content": [
                    {"type": "image_url", "image_url": base64_data_url},
                    {"type": "text", "text": (
                        f"This is the image's OCR in markdown:\n<BEGIN_IMAGE_OCR>\n{image_ocr_markdown}\n<END_IMAGE_OCR>.\n"
                        "Convert this into a structured JSON response with the OCR contents in a sensible dictionary."
                    )}
                ],
            }],
            response_format={"type": "json_object"},
            temperature=0
        )

        try:
            content = chat_response.choices[0].message.content
            response_dict = json.loads(content)
        except (json.JSONDecodeError, IndexError, AttributeError):
            logger.error("Failed to parse structured response")
            return "Failed to parse structured response. Please try again."

        language_members = {member.value: member for member in Language}
        valid_languages = [l for l in response_dict.get("languages", ["English"]) if l in language_members]
        languages = [language_members[l] for l in valid_languages] if valid_languages else [Language.ENGLISH]

        structured_response = StructuredOCR(
            file_name=image_path.name,
            topics=response_dict.get("topics", []),
            languages=languages,
            ocr_contents=response_dict.get("ocr_contents", {})
        )
        logger.info("Successfully processed structured OCR")
        return f"```json\n{json.dumps(structured_response.dict(), indent=4)}\n```"
    except Exception as e:
        logger.error(f"Error processing structured OCR: {str(e)}")
        return f"**Error:** {str(e)}"
    finally:
        if temp_path and os.path.exists(temp_path):
            os.remove(temp_path)

# Gradio Interface
with gr.Blocks(title="Mistral OCR & Structured Output App") as demo:
    gr.Markdown("# Mistral OCR & Structured Output App")
    gr.Markdown("Extract text from PDFs and images, ask questions about documents, or get structured JSON output!")

    with gr.Tab("OCR with PDF URL"):
        pdf_url_input = gr.Textbox(label="PDF URL", placeholder="e.g., https://arxiv.org/pdf/2201.04234")
        pdf_url_output = gr.Textbox(label="OCR Result (Markdown)")
        pdf_url_button = gr.Button("Process PDF")
        pdf_url_button.click(ocr_pdf_url, inputs=pdf_url_input, outputs=pdf_url_output)

    with gr.Tab("OCR with Uploaded PDF"):
        pdf_file_input = gr.File(label="Upload PDF", file_types=[".pdf"])
        pdf_file_output = gr.Textbox(label="OCR Result (Markdown)")
        pdf_file_button = gr.Button("Process Uploaded PDF")
        pdf_file_button.click(ocr_uploaded_pdf, inputs=pdf_file_input, outputs=pdf_file_output)

    with gr.Tab("OCR with Image URL"):
        image_url_input = gr.Textbox(label="Image URL", placeholder="e.g., https://example.com/image.jpg")
        image_url_output = gr.Textbox(label="OCR Result (Markdown)")
        image_url_button = gr.Button("Process Image")
        image_url_button.click(ocr_image_url, inputs=image_url_input, outputs=image_url_output)

    with gr.Tab("OCR with Uploaded Image"):
        image_file_input = gr.File(label="Upload Image", file_types=[".jpg", ".png"])
        image_file_output = gr.Textbox(label="OCR Result (Markdown)")
        image_file_button = gr.Button("Process Uploaded Image")
        image_file_button.click(ocr_uploaded_image, inputs=image_file_input, outputs=image_file_output)

    with gr.Tab("Document Understanding"):
        doc_url_input = gr.Textbox(label="Document URL", placeholder="e.g., https://arxiv.org/pdf/1805.04770")
        question_input = gr.Textbox(label="Question", placeholder="e.g., What is the last sentence?")
        doc_output = gr.Textbox(label="Answer")
        doc_button = gr.Button("Ask Question")
        doc_button.click(document_understanding, inputs=[doc_url_input, question_input], outputs=doc_output)

    with gr.Tab("Structured OCR"):
        struct_image_input = gr.File(label="Upload Image", file_types=[".jpg", ".png"])
        struct_output = gr.Textbox(label="Structured JSON Output")
        struct_button = gr.Button("Get Structured Output")
        struct_button.click(structured_ocr, inputs=struct_image_input, outputs=struct_output)

demo.launch(share=True, debug=True)