File size: 19,443 Bytes
f1996dd
 
 
d5d1102
 
d0b423f
d5d1102
0253cad
971b317
3cd8625
86ba735
 
 
 
be2e6ae
 
d5d1102
 
 
 
 
e3bc0c6
220b45d
3cd8625
220b45d
5361f7d
3cd8625
 
971b317
3cd8625
971b317
3cd8625
 
 
 
 
e3bc0c6
f1996dd
d5d1102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220b45d
e851339
3cd8625
 
86ba735
 
3cd8625
 
58a3898
3cd8625
f8fae95
 
0253cad
3cd8625
f1996dd
220b45d
3cd8625
 
 
 
 
86ba735
3cd8625
 
 
 
 
971b317
 
274798e
 
 
 
 
be2e6ae
 
274798e
 
 
 
be2e6ae
274798e
 
be2e6ae
274798e
 
 
 
 
 
 
be2e6ae
274798e
 
 
 
971b317
 
86ba735
 
 
d5d1102
 
 
86ba735
 
d5d1102
86ba735
 
 
274798e
 
 
 
 
 
 
86ba735
274798e
 
 
3cd8625
d5d1102
 
 
 
 
274798e
 
d5d1102
3cd8625
 
86ba735
971b317
 
3cd8625
274798e
3cd8625
 
86ba735
971b317
86ba735
971b317
3cd8625
86ba735
220b45d
3cd8625
86ba735
d5d1102
 
86ba735
be2e6ae
 
 
 
d5d1102
be2e6ae
 
 
d5d1102
 
 
 
 
 
 
 
be2e6ae
d5d1102
be2e6ae
 
d5d1102
 
 
86ba735
d5d1102
 
86ba735
d5d1102
86ba735
d5d1102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220b45d
d5d1102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220b45d
d5d1102
220b45d
d5d1102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220b45d
d5d1102
 
220b45d
d5d1102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220b45d
 
 
d5d1102
3cd8625
220b45d
d5d1102
 
 
 
 
220b45d
3cd8625
 
 
 
 
 
86ba735
3cd8625
 
 
 
971b317
 
3cd8625
0253cad
971b317
e851339
971b317
3cd8625
e851339
3cd8625
e851339
3cd8625
971b317
 
 
e851339
220b45d
971b317
3cd8625
 
 
 
 
 
 
d5d1102
3cd8625
e851339
971b317
3cd8625
d5d1102
 
 
971b317
3cd8625
971b317
 
d5d1102
e851339
220b45d
971b317
3cd8625
86ba735
 
 
 
 
 
 
 
 
3cd8625
 
d5d1102
3cd8625
971b317
86ba735
 
d5d1102
be2e6ae
 
 
d5d1102
be2e6ae
 
d5d1102
 
 
 
 
 
 
 
 
971b317
3cd8625
971b317
86ba735
d5d1102
971b317
220b45d
3cd8625
2e2b7f9
 
3cd8625
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import os
import base64
import gradio as gr
import json
from mistralai import Mistral, DocumentURLChunk, ImageURLChunk, TextChunk
from mistralai.models import OCRResponse
from typing import Union, List, Tuple, Dict
import requests
import shutil
import time
import pymupdf as fitz
import logging
from tenacity import retry, stop_after_attempt, wait_exponential
from concurrent.futures import ThreadPoolExecutor
import socket
from requests.exceptions import ConnectionError, Timeout
from pathlib import Path
from pydantic import BaseModel
import pycountry
from enum import Enum
from PIL import Image

# Constants
SUPPORTED_IMAGE_TYPES = [".jpg", ".png", ".jpeg"]
SUPPORTED_PDF_TYPES = [".pdf"]
UPLOAD_FOLDER = "./uploads"
MAX_FILE_SIZE = 50 * 1024 * 1024  # 50MB
MAX_PDF_PAGES = 50

# Configuration
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# Language Enum for StructuredOCR
languages = {lang.alpha_2: lang.name for lang in pycountry.languages if hasattr(lang, 'alpha_2')}

class LanguageMeta(Enum.__class__):
    def __new__(metacls, cls, bases, classdict):
        for code, name in languages.items():
            classdict[name.upper().replace(' ', '_')] = name
        return super().__new__(metacls, cls, bases, classdict)

class Language(Enum, metaclass=LanguageMeta):
    pass

class StructuredOCR(BaseModel):
    file_name: str
    topics: list[str]
    languages: list[Language]
    ocr_contents: dict

    def model_dump_json(self, **kwargs):
        # Custom JSON serialization to handle Language enums
        data = self.model_dump(exclude_unset=True, by_alias=True, mode='json')
        for key, value in data.items():
            if isinstance(value, list) and all(isinstance(item, Language) for item in value):
                data[key] = [item.value for item in value]
        return json.dumps(data, indent=4)

class OCRProcessor:
    def __init__(self, api_key: str):
        if not api_key or not isinstance(api_key, str):
            raise ValueError("Valid API key must be provided")
        self.client = Mistral(api_key=api_key)
        self._validate_client()

    def _validate_client(self) -> None:
        try:
            models = self.client.models.list()
            if not models:
                raise ValueError("No models available")
        except Exception as e:
            raise ValueError(f"API key validation failed: {str(e)}")

    @staticmethod
    def _check_file_size(file_input: Union[str, bytes]) -> None:
        if isinstance(file_input, str) and os.path.exists(file_input):
            size = os.path.getsize(file_input)
        elif hasattr(file_input, 'read'):
            size = len(file_input.read())
            file_input.seek(0)
        else:
            size = len(file_input)
        if size > MAX_FILE_SIZE:
            raise ValueError(f"File size exceeds {MAX_FILE_SIZE/1024/1024}MB limit")

    @staticmethod
    def _save_uploaded_file(file_input: Union[str, bytes], filename: str) -> str:
        clean_filename = os.path.basename(filename).replace(os.sep, "_")
        file_path = os.path.join(UPLOAD_FOLDER, f"{int(time.time())}_{clean_filename}")
        
        try:
            if isinstance(file_input, str) and file_input.startswith("http"):
                logger.info(f"Downloading from URL: {file_input}")
                response = requests.get(file_input, timeout=30)
                response.raise_for_status()
                with open(file_path, 'wb') as f:
                    f.write(response.content)
            elif isinstance(file_input, str) and os.path.exists(file_input):
                logger.info(f"Copying local file: {file_input}")
                shutil.copy2(file_input, file_path)
            else:
                logger.info(f"Saving file object: {filename}")
                with open(file_path, 'wb') as f:
                    if hasattr(file_input, 'read'):
                        shutil.copyfileobj(file_input, f)
                    else:
                        f.write(file_input)
            if not os.path.exists(file_path):
                raise FileNotFoundError(f"Failed to save file at {file_path}")
            logger.info(f"File saved to: {file_path}")
            return file_path
        except Exception as e:
            logger.error(f"Error saving file {filename}: {str(e)}")
            raise

    @staticmethod
    def _encode_image(image_path: str) -> str:
        try:
            with open(image_path, "rb") as image_file:
                encoded = base64.b64encode(image_file.read()).decode('utf-8')
                logger.info(f"Encoded image {image_path} to base64 (length: {len(encoded)})")
                return encoded
        except Exception as e:
            logger.error(f"Error encoding image {image_path}: {str(e)}")
            raise ValueError(f"Failed to encode image: {str(e)}")

    @staticmethod
    def _pdf_to_images(pdf_path: str) -> List[Tuple[str, str]]:
        try:
            pdf_document = fitz.open(pdf_path)
            if pdf_document.page_count > MAX_PDF_PAGES:
                pdf_document.close()
                raise ValueError(f"PDF exceeds maximum page limit of {MAX_PDF_PAGES}")
            
            with ThreadPoolExecutor() as executor:
                image_data = list(executor.map(
                    lambda i: OCRProcessor._convert_page(pdf_path, i),
                    range(pdf_document.page_count)
                ))
            pdf_document.close()
            valid_image_data = [(path, encoded) for path, encoded in image_data if path and encoded]
            if not valid_image_data:
                raise ValueError("No valid pages converted from PDF")
            logger.info(f"Converted {len(valid_image_data)} pages to images")
            return valid_image_data
        except Exception as e:
            logger.error(f"Error converting PDF to images: {str(e)}")
            raise

    @staticmethod
    def _convert_page(pdf_path: str, page_num: int) -> Tuple[str, str]:
        try:
            pdf_document = fitz.open(pdf_path)
            page = pdf_document[page_num]
            pix = page.get_pixmap(dpi=150)
            image_path = os.path.join(UPLOAD_FOLDER, f"page_{page_num + 1}_{int(time.time())}.png")
            pix.save(image_path)
            encoded = OCRProcessor._encode_image(image_path)
            pdf_document.close()
            return image_path, encoded
        except Exception as e:
            logger.error(f"Error converting page {page_num}: {str(e)}")
            return None, None

    @retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
    def _call_ocr_api(self, encoded_image: str) -> OCRResponse:
        if not isinstance(encoded_image, str):
            raise TypeError(f"Expected encoded_image to be a string, got {type(encoded_image)}")
        base64_url = f"data:image/png;base64,{encoded_image}"
        try:
            logger.info("Calling OCR API")
            response = self.client.ocr.process(
                document=ImageURLChunk(image_url=base64_url),
                model="mistral-ocr-latest",
                include_image_base64=True
            )
            logger.info("OCR API call successful")
            try:
                if hasattr(response, 'model_dump_json'):
                    response_dict = json.loads(response.model_dump_json())
                else:
                    response_dict = {k: v for k, v in response.__dict__.items() if isinstance(v, (str, int, float, list, dict))}
                logger.info(f"Raw OCR response: {json.dumps(response_dict, default=str, indent=4)}")
            except Exception as log_err:
                logger.warning(f"Failed to log raw OCR response: {str(log_err)}")
            return response
        except (ConnectionError, TimeoutError, socket.error) as e:
            logger.error(f"Network error during OCR API call: {str(e)}")
            raise
        except TypeError as e:
            logger.error(f"TypeError in OCR API call: {str(e)}", exc_info=True)
            raise
        except Exception as e:
            logger.error(f"Unexpected error in OCR API call: {str(e)}", exc_info=True)
            raise

    def _process_pdf_with_ocr(self, pdf_path: str) -> Tuple[str, List[str], List[Dict]]:
        try:
            # Upload PDF and get signed URL
            uploaded_file = self.client.files.upload(
                file={"file_name": Path(pdf_path).stem, "content": Path(pdf_path).read_bytes()},
                purpose="ocr",
            )
            signed_url = self.client.files.get_signed_url(file_id=uploaded_file.id, expiry=1).url

            # Process with OCR
            ocr_response = self.client.ocr.process(
                document=DocumentURLChunk(document_url=signed_url),
                model="mistral-ocr-latest",
                include_image_base64=True
            )
            markdown, base64_images = self._get_combined_markdown(ocr_response)
            json_results = self._convert_to_structured_json(markdown, pdf_path)
            # Fallback to local images if OCR images are missing
            image_paths = []
            if not any(page.images for page in ocr_response.pages):
                logger.warning("No images found in OCR response; using local images")
                image_data = self._pdf_to_images(pdf_path)
                image_paths = [path for path, _ in image_data]
            else:
                image_paths = [os.path.join(UPLOAD_FOLDER, f"ocr_page_{i}.png") for i in range(len(ocr_response.pages))]
                for i, base64_img in enumerate(base64_images):
                    if base64_img:
                        try:
                            img_data = base64.b64decode(base64_img.split(',')[1])
                            with open(image_paths[i], "wb") as f:
                                f.write(img_data)
                            if os.path.exists(image_paths[i]):
                                logger.info(f"Image {image_paths[i]} saved and exists")
                            else:
                                logger.error(f"Image {image_paths[i]} saved but does not exist")
                        except Exception as e:
                            logger.error(f"Error saving image {i}: {str(e)}")
                            image_paths[i] = None
                image_paths = [path for path in image_paths if path and os.path.exists(path)]
            logger.info(f"Final image paths: {image_paths}")
            return markdown, image_paths, json_results
        except Exception as e:
            return self._handle_error("PDF OCR processing", e), [], []

    def _get_combined_markdown(self, ocr_response: OCRResponse) -> Tuple[str, List[str]]:
        markdowns = []
        base64_images = []
        for i, page in enumerate(ocr_response.pages):
            image_data = {}
            for img in page.images:
                if img.image_base64:
                    base64_url = f"data:image/png;base64,{img.image_base64}"
                    image_data[img.id] = base64_url
                    base64_images.append(base64_url)
                    logger.info(f"Base64 image {img.id} length: {len(img.image_base64)}")
                else:
                    base64_images.append(None)
            markdown = page.markdown or "No text detected"
            markdown = replace_images_in_markdown(markdown, image_data)
            logger.info(f"Page {i} markdown (first 200 chars): {markdown[:200]}...")
            markdowns.append(markdown)
        return "\n\n".join(markdowns), base64_images

    def _convert_to_structured_json(self, markdown: str, file_path: str) -> List[Dict]:
        try:
            text_only_markdown = re.sub(r'!\[.*?\]\(data:image/[^)]+\)', '', markdown)
            logger.info(f"Text-only markdown length: {len(text_only_markdown)}")
            logger.info(f"Text-only markdown content: {text_only_markdown[:200]}...")

            chat_response = self.client.chat.parse(
                model="pixtral-12b-latest",
                messages=[
                    {
                        "role": "user",
                        "content": f"Given OCR output from a PDF about African history and artifacts, convert to JSON with file_name, topics (e.g., African Artifacts, Tribal History), languages (e.g., English), and ocr_contents (title and list of items with descriptions and image refs).\n\nOCR Output:\n{text_only_markdown}"
                    },
                ],
                response_format=StructuredOCR,
                temperature=0
            )
            structured_result = chat_response.choices[0].message.parsed
            json_str = structured_result.model_dump_json()
            logger.info(f"Structured JSON: {json_str}")
            return [json.loads(json_str)]
        except Exception as e:
            logger.error(f"Error converting to structured JSON: {str(e)}", exc_info=True)
            return [{"error": str(e), "file_name": Path(file_path).stem}]

    def ocr_uploaded_pdf(self, pdf_file: Union[str, bytes]) -> Tuple[str, List[str], List[Dict]]:
        file_path = self._save_uploaded_file(pdf_file, getattr(pdf_file, 'name', f"pdf_{int(time.time())}.pdf"))
        return self._process_pdf_with_ocr(file_path)

    def ocr_pdf_url(self, pdf_url: str) -> Tuple[str, List[str], List[Dict]]:
        file_path = self._save_uploaded_file(pdf_url, pdf_url.split('/')[-1] or f"pdf_{int(time.time())}.pdf")
        return self._process_pdf_with_ocr(file_path)

    def ocr_uploaded_image(self, image_file: Union[str, bytes]) -> Tuple[str, str, Dict]:
        file_path = self._save_uploaded_file(image_file, getattr(image_file, 'name', f"image_{int(time.time())}.jpg"))
        encoded_image = self._encode_image(file_path)
        base64_url = f"data:image/png;base64,{encoded_image}"
        response = self._call_ocr_api(encoded_image)
        markdown, base64_images = self._get_combined_markdown(response)
        json_result = self._convert_to_structured_json(markdown, file_path)[0]
        return markdown, file_path, json_result

    @staticmethod
    def _handle_error(context: str, error: Exception) -> str:
        logger.error(f"Error in {context}: {str(error)}", exc_info=True)
        return f"**Error in {context}:** {str(error)}"

def replace_images_in_markdown(markdown_str: str, images_dict: dict) -> str:
    for img_name, base64_str in images_dict.items():
        markdown_str = markdown_str.replace(f"![{img_name}]({img_name})", f"![{img_name}]({base64_str})")
    return markdown_str

def create_interface():
    css = """
    .output-markdown {font-size: 14px; max-height: 500px; overflow-y: auto;}
    .status {color: #666; font-style: italic;}
    """
    
    with gr.Blocks(title="Mistral OCR App", css=css) as demo:
        gr.Markdown("# Mistral OCR App\nUpload images or PDFs, or provide a PDF URL for OCR processing")
        
        with gr.Row():
            api_key = gr.Textbox(label="Mistral API Key", type="password", placeholder="Enter your API key")
            set_key_btn = gr.Button("Set API Key", variant="primary")
        
        processor_state = gr.State()
        status = gr.Markdown("Please enter API key", elem_classes="status")

        def init_processor(key):
            try:
                processor = OCRProcessor(key)
                return processor, "✅ API key validated successfully"
            except Exception as e:
                return None, f"❌ Error: {str(e)}"

        set_key_btn.click(
            fn=init_processor,
            inputs=api_key,
            outputs=[processor_state, status]
        )

        with gr.Tab("Image OCR"):
            with gr.Row():
                image_input = gr.File(
                    label=f"Upload Image (max {MAX_FILE_SIZE/1024/1024}MB)",
                    file_types=SUPPORTED_IMAGE_TYPES
                )
                image_preview = gr.Image(label="Preview", height=300)
            image_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
            image_json_output = gr.JSON(label="Structured JSON Output")
            process_image_btn = gr.Button("Process Image", variant="primary")

            def process_image(processor, image):
                if not processor or not image:
                    return "Please set API key and upload an image", None, {}
                markdown, image_path, json_data = processor.ocr_uploaded_image(image)
                return markdown, image_path, json_data

            process_image_btn.click(
                fn=process_image,
                inputs=[processor_state, image_input],
                outputs=[image_output, image_preview, image_json_output]
            )

        with gr.Tab("PDF OCR"):
            with gr.Row():
                with gr.Column():
                    pdf_input = gr.File(
                        label=f"Upload PDF (max {MAX_FILE_SIZE/1024/1024}MB, {MAX_PDF_PAGES} pages)",
                        file_types=SUPPORTED_PDF_TYPES
                    )
                    pdf_url_input = gr.Textbox(
                        label="Or Enter PDF URL",
                        placeholder="e.g., https://arxiv.org/pdf/2201.04234.pdf"
                    )
                pdf_gallery = gr.Gallery(label="PDF Pages", height=300)
            pdf_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
            pdf_json_output = gr.JSON(label="Structured JSON Output")
            process_pdf_btn = gr.Button("Process PDF", variant="primary")

            def process_pdf(processor, pdf_file, pdf_url):
                if not processor:
                    return "Please set API key first", [], {}
                logger.info(f"Received inputs - PDF file: {pdf_file}, PDF URL: {pdf_url}")
                if pdf_file is not None and hasattr(pdf_file, 'name'):
                    logger.info(f"Processing as uploaded PDF: {pdf_file.name}")
                    markdown, image_paths, json_data = processor.ocr_uploaded_pdf(pdf_file)
                elif pdf_url and pdf_url.strip():
                    logger.info(f"Processing as PDF URL: {pdf_url}")
                    markdown, image_paths, json_data = processor.ocr_pdf_url(pdf_url)
                else:
                    return "Please upload a PDF or provide a valid URL", [], {}
                # Fallback to display images if markdown rendering fails
                image_components = []
                for path in image_paths:
                    if path and os.path.exists(path):
                        image_components.append(gr.Image(path, label=f"Page Image"))
                return markdown, image_paths, json_data, gr.Column(*image_components) if image_components else gr.Markdown("No images available")

            process_pdf_btn.click(
                fn=process_pdf,
                inputs=[processor_state, pdf_input, pdf_url_input],
                outputs=[pdf_output, pdf_gallery, pdf_json_output, gr.Column()]
            )

    return demo

if __name__ == "__main__":
    os.environ['START_TIME'] = time.strftime('%Y-%m-%d %H:%M:%S')
    print(f"===== Application Startup at {os.environ['START_TIME']} =====")
    create_interface().launch(
        share=True,
        debug=True,
    )