Spaces:
Running
Running
File size: 11,640 Bytes
f1996dd d0b423f e3bc0c6 e851339 220b45d e3bc0c6 220b45d e3bc0c6 f1996dd 220b45d e851339 220b45d f1996dd 220b45d f1996dd 220b45d 468fb8d 220b45d d0b423f 220b45d e851339 220b45d e851339 f1996dd 220b45d e851339 220b45d ad2f309 220b45d ef7763d e851339 220b45d ad2f309 220b45d e851339 220b45d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
import base64
import gradio as gr
from mistralai import Mistral
from mistralai.models import OCRResponse
from pathlib import Path
from pydantic import BaseModel
import pycountry
import json
import logging
from tenacity import retry, stop_after_attempt, wait_fixed
import tempfile
from typing import Union, Dict, List
from contextlib import contextmanager
# Constants
DEFAULT_LANGUAGE = "English"
SUPPORTED_IMAGE_TYPES = [".jpg", ".png"]
SUPPORTED_PDF_TYPES = [".pdf"]
TEMP_FILE_EXPIRY = 7200 # 2 hours in seconds
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class OCRProcessor:
def __init__(self, api_key: str):
if not api_key:
raise ValueError("API key must be provided")
self.api_key = api_key
self.client = Mistral(api_key=self.api_key)
@staticmethod
def _encode_image(image_path: str) -> str:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
@staticmethod
@contextmanager
def _temp_file(content: bytes, suffix: str) -> str:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
try:
temp_file.write(content)
temp_file.close()
yield temp_file.name
finally:
if os.path.exists(temp_file.name):
os.unlink(temp_file.name)
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def _call_ocr_api(self, document: Dict) -> OCRResponse:
return self.client.ocr.process(model="mistral-ocr-latest", document=document)
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def _call_chat_complete(self, model: str, messages: List[Dict], **kwargs) -> Dict:
return self.client.chat.complete(model=model, messages=messages, **kwargs)
def _get_file_content(self, file_input: Union[str, bytes]) -> bytes:
if isinstance(file_input, str):
with open(file_input, "rb") as f:
return f.read()
return file_input.read() if hasattr(file_input, 'read') else file_input
def ocr_pdf_url(self, pdf_url: str) -> str:
logger.info(f"Processing PDF URL: {pdf_url}")
try:
response = self._call_ocr_api({"type": "document_url", "document_url": pdf_url})
return self._extract_markdown(response)
except Exception as e:
return self._handle_error("PDF URL processing", e)
def ocr_uploaded_pdf(self, pdf_file: Union[str, bytes]) -> str:
file_name = getattr(pdf_file, 'name', 'unknown')
logger.info(f"Processing uploaded PDF: {file_name}")
try:
content = self._get_file_content(pdf_file)
with self._temp_file(content, ".pdf") as temp_path:
uploaded_file = self.client.files.upload(
file={"file_name": temp_path, "content": open(temp_path, "rb")},
purpose="ocr"
)
signed_url = self.client.files.get_signed_url(file_id=uploaded_file.id, expiry=TEMP_FILE_EXPIRY)
response = self._call_ocr_api({"type": "document_url", "document_url": signed_url.url})
return self._extract_markdown(response)
except Exception as e:
return self._handle_error("uploaded PDF processing", e)
def ocr_image_url(self, image_url: str) -> str:
logger.info(f"Processing image URL: {image_url}")
try:
response = self._call_ocr_api({"type": "image_url", "image_url": image_url})
return self._extract_markdown(response)
except Exception as e:
return self._handle_error("image URL processing", e)
def ocr_uploaded_image(self, image_file: Union[str, bytes]) -> str:
file_name = getattr(image_file, 'name', 'unknown')
logger.info(f"Processing uploaded image: {file_name}")
try:
content = self._get_file_content(image_file)
with self._temp_file(content, ".jpg") as temp_path:
encoded_image = self._encode_image(temp_path)
base64_url = f"data:image/jpeg;base64,{encoded_image}"
response = self._call_ocr_api({"type": "image_url", "image_url": base64_url})
return self._extract_markdown(response)
except Exception as e:
return self._handle_error("uploaded image processing", e)
def document_understanding(self, doc_url: str, question: str) -> str:
logger.info(f"Document understanding - URL: {doc_url}, Question: {question}")
try:
messages = [{"role": "user", "content": [
{"type": "text", "text": question},
{"type": "document_url", "document_url": doc_url}
]}]
response = self._call_chat_complete(model="mistral-small-latest", messages=messages)
return response.choices[0].message.content if response.choices else "No response received"
except Exception as e:
return self._handle_error("document understanding", e)
def structured_ocr(self, image_file: Union[str, bytes]) -> str:
file_name = getattr(image_file, 'name', 'unknown')
logger.info(f"Processing structured OCR for: {file_name}")
try:
content = self._get_file_content(image_file)
with self._temp_file(content, ".jpg") as temp_path:
encoded_image = self._encode_image(temp_path)
base64_url = f"data:image/jpeg;base64,{encoded_image}"
ocr_response = self._call_ocr_api({"type": "image_url", "image_url": base64_url})
markdown = self._extract_markdown(ocr_response)
chat_response = self._call_chat_complete(
model="pixtral-12b-latest",
messages=[{
"role": "user",
"content": [
{"type": "image_url", "image_url": base64_url},
{"type": "text", "text": (
f"OCR result:\n<BEGIN_IMAGE_OCR>\n{markdown}\n<END_IMAGE_OCR>\n"
"Convert to structured JSON with file_name, topics, languages, and ocr_contents"
)}
]
}],
response_format={"type": "json_object"},
temperature=0
)
content = json.loads(chat_response.choices[0].message.content if chat_response.choices else "{}")
return self._format_structured_response(temp_path, content)
except Exception as e:
return self._handle_error("structured OCR", e)
@staticmethod
def _extract_markdown(response: OCRResponse) -> str:
return response.pages[0].markdown if response.pages else "No text extracted"
@staticmethod
def _handle_error(context: str, error: Exception) -> str:
logger.error(f"Error in {context}: {str(error)}")
return f"**Error:** {str(error)}"
@staticmethod
def _format_structured_response(file_path: str, content: Dict) -> str:
languages = {lang.alpha_2: lang.name for lang in pycountry.languages if hasattr(lang, 'alpha_2')}
valid_langs = [l for l in content.get("languages", [DEFAULT_LANGUAGE]) if l in languages.values()]
response = {
"file_name": Path(file_path).name,
"topics": content.get("topics", []),
"languages": valid_langs or [DEFAULT_LANGUAGE],
"ocr_contents": content.get("ocr_contents", {})
}
return f"```json\n{json.dumps(response, indent=4)}\n```"
def create_interface():
with gr.Blocks(title="Mistral OCR & Structured Output App") as demo:
gr.Markdown("# Mistral OCR & Structured Output App")
gr.Markdown("Enter your Mistral API key below to use the app. Extract text from PDFs and images or get structured JSON output.")
# API Key input
api_key_input = gr.Textbox(
label="Mistral API Key",
placeholder="Enter your Mistral API key here",
type="password" # Hide the API key for security
)
# Function to initialize processor with API key
def initialize_processor(api_key):
try:
return OCRProcessor(api_key)
except Exception as e:
return str(e)
# Store processor state
processor_state = gr.State()
# Button to set API key
set_api_button = gr.Button("Set API Key")
api_status = gr.Markdown("API key not set. Please enter and set your key.")
# Update processor and status when API key is set
set_api_button.click(
fn=lambda key: (initialize_processor(key), "**Success:** API key set!" if not isinstance(initialize_processor(key), str) else f"**Error:** {initialize_processor(key)}"),
inputs=api_key_input,
outputs=[processor_state, api_status]
)
tabs = [
("OCR with PDF URL", gr.Textbox, "ocr_pdf_url", "PDF URL", None),
("OCR with Uploaded PDF", gr.File, "ocr_uploaded_pdf", "Upload PDF", SUPPORTED_PDF_TYPES),
("OCR with Image URL", gr.Textbox, "ocr_image_url", "Image URL", None),
("OCR with Uploaded Image", gr.File, "ocr_uploaded_image", "Upload Image", SUPPORTED_IMAGE_TYPES),
("Structured OCR", gr.File, "structured_ocr", "Upload Image", SUPPORTED_IMAGE_TYPES),
]
for name, input_type, fn_name, label, file_types in tabs:
with gr.Tab(name):
if input_type == gr.Textbox:
inputs = input_type(label=label, placeholder=f"e.g., https://example.com/{label.lower().replace(' ', '')}")
else: # gr.File
inputs = input_type(label=label, file_types=file_types)
output = gr.Markdown(label="Result")
button_label = name.replace("OCR with ", "").replace("Structured ", "Get Structured ")
# Wrapper function to use processor from state
def process_with_api(processor, input_data):
if not processor or isinstance(processor, str):
return "**Error:** Please set a valid API key first."
fn = getattr(processor, fn_name)
return fn(input_data)
gr.Button(f"Process {button_label}").click(
fn=process_with_api,
inputs=[processor_state, inputs],
outputs=output
)
with gr.Tab("Document Understanding"):
doc_url = gr.Textbox(label="Document URL", placeholder="e.g., https://arxiv.org/pdf/1805.04770")
question = gr.Textbox(label="Question", placeholder="e.g., What is the last sentence?")
output = gr.Markdown(label="Answer")
def doc_understanding_with_api(processor, url, q):
if not processor or isinstance(processor, str):
return "**Error:** Please set a valid API key first."
return processor.document_understanding(url, q)
gr.Button("Ask Question").click(
fn=doc_understanding_with_api,
inputs=[processor_state, doc_url, question],
outputs=output
)
return demo
if __name__ == "__main__":
create_interface().launch(share=True, debug=True) |