File size: 9,905 Bytes
f1996dd
 
 
 
d0b423f
 
 
 
 
 
e3bc0c6
 
 
220b45d
 
e3bc0c6
220b45d
 
 
 
 
 
 
 
e3bc0c6
f1996dd
220b45d
 
 
 
 
 
f1996dd
220b45d
 
f1996dd
 
220b45d
 
 
 
 
 
468fb8d
220b45d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b423f
 
220b45d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad2f309
220b45d
ad2f309
220b45d
 
f1996dd
220b45d
ad2f309
220b45d
ad2f309
 
 
 
220b45d
ef7763d
 
 
220b45d
 
ad2f309
 
220b45d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import base64
import gradio as gr
from mistralai import Mistral
from mistralai.models import OCRResponse
from pathlib import Path
from enum import Enum
from pydantic import BaseModel
import pycountry
import json
import logging
from tenacity import retry, stop_after_attempt, wait_fixed
import tempfile
from typing import Union, Optional, Dict, List
from contextlib import contextmanager

# Constants
DEFAULT_LANGUAGE = "English"
SUPPORTED_IMAGE_TYPES = [".jpg", ".png"]
SUPPORTED_PDF_TYPES = [".pdf"]
TEMP_FILE_EXPIRY = 7200  # 2 hours in seconds

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class OCRProcessor:
    def __init__(self):
        self.api_key = os.environ.get("MISTRAL_API_KEY")
        if not self.api_key:
            raise ValueError("MISTRAL_API_KEY environment variable is not set")
        self.client = Mistral(api_key=self.api_key)

    @staticmethod
    def _encode_image(image_path: str) -> str:
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')

    @staticmethod
    @contextmanager
    def _temp_file(content: bytes, suffix: str) -> str:
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
        try:
            temp_file.write(content)
            temp_file.close()
            yield temp_file.name
        finally:
            if os.path.exists(temp_file.name):
                os.unlink(temp_file.name)

    @retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
    def _call_ocr_api(self, document: Dict) -> OCRResponse:
        return self.client.ocr.process(model="mistral-ocr-latest", document=document)

    @retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
    def _call_chat_complete(self, model: str, messages: List[Dict], **kwargs) -> Dict:
        return self.client.chat.complete(model=model, messages=messages, **kwargs)

    def _get_file_content(self, file_input: Union[str, bytes]) -> bytes:
        if isinstance(file_input, str):
            with open(file_input, "rb") as f:
                return f.read()
        return file_input.read() if hasattr(file_input, 'read') else file_input

    def ocr_pdf_url(self, pdf_url: str) -> str:
        logger.info(f"Processing PDF URL: {pdf_url}")
        try:
            response = self._call_ocr_api({"type": "document_url", "document_url": pdf_url})
            return self._extract_markdown(response)
        except Exception as e:
            return self._handle_error("PDF URL processing", e)

    def ocr_uploaded_pdf(self, pdf_file: Union[str, bytes]) -> str:
        file_name = getattr(pdf_file, 'name', 'unknown')
        logger.info(f"Processing uploaded PDF: {file_name}")
        try:
            content = self._get_file_content(pdf_file)
            with self._temp_file(content, ".pdf") as temp_path:
                uploaded_file = self.client.files.upload(
                    file={"file_name": temp_path, "content": open(temp_path, "rb")},
                    purpose="ocr"
                )
                signed_url = self.client.files.get_signed_url(file_id=uploaded_file.id, expiry=TEMP_FILE_EXPIRY)
                response = self._call_ocr_api({"type": "document_url", "document_url": signed_url.url})
                return self._extract_markdown(response)
        except Exception as e:
            return self._handle_error("uploaded PDF processing", e)

    def ocr_image_url(self, image_url: str) -> str:
        logger.info(f"Processing image URL: {image_url}")
        try:
            response = self._call_ocr_api({"type": "image_url", "image_url": image_url})
            return self._extract_markdown(response)
        except Exception as e:
            return self._handle_error("image URL processing", e)

    def ocr_uploaded_image(self, image_file: Union[str, bytes]) -> str:
        file_name = getattr(image_file, 'name', 'unknown')
        logger.info(f"Processing uploaded image: {file_name}")
        try:
            content = self._get_file_content(image_file)
            with self._temp_file(content, ".jpg") as temp_path:
                encoded_image = self._encode_image(temp_path)
                base64_url = f"data:image/jpeg;base64,{encoded_image}"
                response = self._call_ocr_api({"type": "image_url", "image_url": base64_url})
                return self._extract_markdown(response)
        except Exception as e:
            return self._handle_error("uploaded image processing", e)

    def document_understanding(self, doc_url: str, question: str) -> str:
        logger.info(f"Document understanding - URL: {doc_url}, Question: {question}")
        try:
            messages = [{"role": "user", "content": [
                {"type": "text", "text": question},
                {"type": "document_url", "document_url": doc_url}
            ]}]
            response = self._call_chat_complete(model="mistral-small-latest", messages=messages)
            return response.choices[0].message.content if response.choices else "No response received"
        except Exception as e:
            return self._handle_error("document understanding", e)

    def structured_ocr(self, image_file: Union[str, bytes]) -> str:
        file_name = getattr(image_file, 'name', 'unknown')
        logger.info(f"Processing structured OCR for: {file_name}")
        try:
            content = self._get_file_content(image_file)
            with self._temp_file(content, ".jpg") as temp_path:
                encoded_image = self._encode_image(temp_path)
                base64_url = f"data:image/jpeg;base64,{encoded_image}"
                ocr_response = self._call_ocr_api({"type": "image_url", "image_url": base64_url})
                markdown = self._extract_markdown(ocr_response)

                chat_response = self._call_chat_complete(
                    model="pixtral-12b-latest",
                    messages=[{
                        "role": "user",
                        "content": [
                            {"type": "image_url", "image_url": base64_url},
                            {"type": "text", "text": (
                                f"OCR result:\n<BEGIN_IMAGE_OCR>\n{markdown}\n<END_IMAGE_OCR>\n"
                                "Convert to structured JSON with file_name, topics, languages, and ocr_contents"
                            )}
                        ]
                    }],
                    response_format={"type": "json_object"},
                    temperature=0
                )

                content = json.loads(chat_response.choices[0].message.content if chat_response.choices else "{}")
                return self._format_structured_response(temp_path, content)
        except Exception as e:
            return self._handle_error("structured OCR", e)

    @staticmethod
    def _extract_markdown(response: OCRResponse) -> str:
        return response.pages[0].markdown if response.pages else "No text extracted"

    @staticmethod
    def _handle_error(context: str, error: Exception) -> str:
        logger.error(f"Error in {context}: {str(error)}")
        return f"**Error:** {str(error)}"

    @staticmethod
    def _format_structured_response(file_path: str, content: Dict) -> str:
        languages = {lang.alpha_2: lang.name for lang in pycountry.languages if hasattr(lang, 'alpha_2')}
        valid_langs = [l for l in content.get("languages", [DEFAULT_LANGUAGE]) if l in languages.values()]
        
        response = {
            "file_name": Path(file_path).name,
            "topics": content.get("topics", []),
            "languages": valid_langs or [DEFAULT_LANGUAGE],
            "ocr_contents": content.get("ocr_contents", {})
        }
        return f"```json\n{json.dumps(response, indent=4)}\n```"

def create_interface():
    processor = OCRProcessor()
    with gr.Blocks(title="Mistral OCR & Structured Output App") as demo:
        gr.Markdown("# Mistral OCR & Structured Output App")
        gr.Markdown("Extract text from PDFs and images or get structured JSON output")

        tabs = [
            ("OCR with PDF URL", gr.Textbox, processor.ocr_pdf_url, "PDF URL", None),
            ("OCR with Uploaded PDF", gr.File, processor.ocr_uploaded_pdf, "Upload PDF", SUPPORTED_PDF_TYPES),
            ("OCR with Image URL", gr.Textbox, processor.ocr_image_url, "Image URL", None),
            ("OCR with Uploaded Image", gr.File, processor.ocr_uploaded_image, "Upload Image", SUPPORTED_IMAGE_TYPES),
            ("Structured OCR", gr.File, processor.structured_ocr, "Upload Image", SUPPORTED_IMAGE_TYPES),
        ]

        for name, input_type, fn, label, file_types in tabs:
            with gr.Tab(name):
                if input_type == gr.Textbox:
                    inputs = input_type(label=label, placeholder=f"e.g., https://example.com/{label.lower().replace(' ', '')}")
                else:  # gr.File
                    inputs = input_type(label=label, file_types=file_types)
                output = gr.Markdown(label="Result")
                # Use a more reliable way to get the button label
                button_label = name.replace("OCR with ", "").replace("Structured ", "Get Structured ")
                gr.Button(f"Process {button_label}").click(fn, inputs=inputs, outputs=output)

        with gr.Tab("Document Understanding"):
            doc_url = gr.Textbox(label="Document URL", placeholder="e.g., https://arxiv.org/pdf/1805.04770")
            question = gr.Textbox(label="Question", placeholder="e.g., What is the last sentence?")
            output = gr.Markdown(label="Answer")
            gr.Button("Ask Question").click(processor.document_understanding, inputs=[doc_url, question], outputs=output)

    return demo

if __name__ == "__main__":
    create_interface().launch(share=True, debug=True)