Spaces:
Sleeping
Sleeping
File size: 25,321 Bytes
5cd0c37 7e08e15 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 7e08e15 5cd0c37 f1e3572 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 f1e3572 5cd0c37 7e08e15 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 7e08e15 5cd0c37 7e08e15 f1e3572 5cd0c37 7e08e15 5cd0c37 f1e3572 5cd0c37 7e08e15 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 f1e3572 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 7e08e15 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 f1e3572 5cd0c37 7e08e15 5cd0c37 7e08e15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
from fastapi import FastAPI, HTTPException, Header
from pydantic import BaseModel
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import base64
import os
import logging
from datetime import datetime
from fastapi.responses import HTMLResponse
from simple_salesforce import Salesforce
import requests
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# Environment variables for Salesforce
SF_USERNAME = os.getenv("SF_USERNAME")
SF_PASSWORD = os.getenv("SF_PASSWORD")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
SF_DOMAIN = os.getenv("SF_DOMAIN", "login")
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
HUGGINGFACE_API_URL = os.getenv("HUGGINGFACE_API_URL")
# Validate environment variables
required_env_vars = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN"]
for var in required_env_vars:
if not os.getenv(var):
logger.error(f"Environment variable {var} is not set")
raise ValueError(f"Environment variable {var} is not set")
# Optional Hugging Face validation
USE_HUGGINGFACE = HUGGINGFACE_API_KEY and HUGGINGFACE_API_URL
if USE_HUGGINGFACE:
logger.info("Hugging Face integration enabled")
else:
logger.info("Hugging Face integration disabled; using local scoring")
# Connect to Salesforce
try:
sf = Salesforce(
username=SF_USERNAME,
password=SF_PASSWORD,
security_token=SF_SECURITY_TOKEN,
domain=SF_DOMAIN
)
logger.info("Successfully connected to Salesforce")
except Exception as e:
logger.error(f"Failed to connect to Salesforce: {str(e)}")
raise
# VendorLog model to match Salesforce data
class VendorLog(BaseModel):
vendorLogId: str
vendorId: str
vendorRecordId: str
workDetails: str
qualityReport: str
incidentLog: str
workCompletionDate: str
actualCompletionDate: str
vendorLogName: str
delayDays: int
project: str
# Store vendor logs for display
vendor_logs = []
def validate_salesforce_fields():
"""Verify required fields exist in Salesforce"""
try:
# Check Vendor_Log__c fields
vendor_log_desc = sf.Vendor_Log__c.describe()
required_fields = [
'Vendor__c', 'Work_Completion_Percentage__c', 'Quality_Percentage__c',
'Incident_Severity__c', 'Work_Completion_Date__c', 'Actual_Completion_Date__c',
'Delay_Days__c', 'Project__c'
]
available_fields = [field['name'] for field in vendor_log_desc['fields']]
for field in required_fields:
if field not in available_fields:
logger.error(f"Field {field} not found in Vendor_Log__c")
raise ValueError(f"Field {field} not found in Vendor_Log__c")
# Check Subcontractor_Performance_Score__c fields
score_desc = sf.Subcontractor_Performance_Score__c.describe()
required_score_fields = [
'Vendor__c', 'Month__c', 'Quality_Score__c', 'Timeliness_Score__c',
'Safety_Score__c', 'Communication_Score__c', 'Alert_Flag__c', 'Certification_URL__c'
]
available_score_fields = [field['name'] for field in score_desc['fields']]
for field in required_score_fields:
if field not in available_score_fields:
logger.error(f"Field {field} not found in Subcontractor_Performance_Score__c")
raise ValueError(f"Field {field} not found in Subcontractor_Performance_Score__c")
logger.info("All required Salesforce fields validated successfully")
except Exception as e:
logger.error(f"Error validating Salesforce fields: {str(e)}")
raise
# Validate fields on startup
validate_salesforce_fields()
def fetch_vendor_logs_from_salesforce():
try:
query = """
SELECT Id, Name, Vendor__c, Work_Completion_Percentage__c, Quality_Percentage__c,
Incident_Severity__c, Work_Completion_Date__c, Actual_Completion_Date__c,
Delay_Days__c, Project__c
FROM Vendor_Log__c
WHERE Vendor__c != null
"""
result = sf.query_all(query)
logs = []
for record in result['records']:
log = VendorLog(
vendorLogId=record['Id'] or "Unknown",
vendorId=record['Name'] or "Unknown",
vendorRecordId=record['Vendor__c'] or "Unknown",
workDetails=str(record['Work_Completion_Percentage__c'] or "0.0"),
qualityReport=str(record['Quality_Percentage__c'] or "0.0"),
incidentLog=record['Incident_Severity__c'] or "None",
workCompletionDate=record['Work_Completion_Date__c'] or "N/A",
actualCompletionDate=record['Actual_Completion_Date__c'] or "N/A",
vendorLogName=record['Name'] or "Unknown",
delayDays=int(record['Delay_Days__c'] or 0),
project=record['Project__c'] or "Unknown"
)
logs.append(log)
logger.info(f"Fetched {len(logs)} vendor logs from Salesforce")
return logs
except Exception as e:
logger.error(f"Error fetching vendor logs from Salesforce: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error fetching vendor logs: {str(e)}")
def calculate_scores_local(log: VendorLog):
try:
work_completion_percentage = float(log.workDetails)
quality_percentage = float(log.qualityReport)
# Quality Score: Directly use the quality percentage
quality_score = quality_percentage
# Timeliness Score: Based on delay days
timeliness_score = 100.0 if log.delayDays <= 0 else 80.0 if log.delayDays <= 3 else 60.0 if log.delayDays <= 7 else 40.0
# Safety Score: Based on incident severity
severity_map = {'None': 100.0, 'Low': 80.0, 'Minor': 80.0, 'Medium': 50.0, 'High': 20.0}
safety_score = severity_map.get(log.incidentLog, 100.0)
# Communication Score: Weighted average of other scores
communication_score = (quality_score * 0.33 + timeliness_score * 0.33 + safety_score * 0.33)
return {
'qualityScore': round(quality_score, 2),
'timelinessScore': round(timeliness_score, 2),
'safetyScore': round(safety_score, 2),
'communicationScore': round(communication_score, 2)
}
except Exception as e:
logger.error(f"Error calculating local scores: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error calculating scores: {str(e)}")
def calculate_scores_huggingface(log: VendorLog):
try:
payload = {
'vendor_id': log.vendorId,
'delay_days': log.delayDays,
'work_completion_percentage': float(log.workDetails),
'quality_percentage': float(log.qualityReport),
'incident_severity': log.incidentLog,
'communication_frequency': 5 # Placeholder; adjust as needed
}
headers = {
'Authorization': f'Bearer {HUGGINGFACE_API_KEY}',
'Content-Type': 'application/json'
}
response = requests.post(HUGGINGFACE_API_URL, json=payload, headers=headers, timeout=30)
response.raise_for_status()
result = response.json()
return {
'qualityScore': round(result.get('quality_score', 0), 2),
'timelinessScore': round(result.get('timeliness_score', 0), 2),
'safetyScore': round(result.get('safety_score', 0), 2),
'communicationScore': round(result.get('communication_score', 0), 2)
}
except Exception as e:
logger.error(f"Error calculating Hugging Face scores: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error with Hugging Face API: {str(e)}")
def calculate_scores(log: VendorLog):
if USE_HUGGINGFACE:
return calculate_scores_huggingface(log)
return calculate_scores_local(log)
def get_feedback(score: float, metric: str) -> str:
try:
if score >= 90:
return "Excellent: Maintain this standard"
elif score >= 70:
return "Good: Keep up the good work"
elif score >= 50:
if metric == 'Timeliness':
return "Needs Improvement: Maintain schedules to complete tasks on time"
elif metric == 'Safety':
return "Needs Improvement: Implement stricter safety protocols"
elif metric == 'Quality':
return "Needs Improvement: Focus on improving work quality"
else:
return "Needs Improvement: Enhance coordination with project teams"
else:
if metric == 'Timeliness':
return "Poor: Significant delays detected"
elif metric == 'Safety':
return "Poor: Critical safety issues identified"
elif metric == 'Quality':
return "Poor: Quality standards not met"
else:
return "Poor: Communication issues detected"
except Exception as e:
logger.error(f"Error generating feedback: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error generating feedback: {str(e)}")
def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict):
try:
filename = f'report_{vendor_id}_{datetime.now().strftime("%Y%m%d%H%M%S")}.pdf'
c = canvas.Canvas(filename, pagesize=letter)
c.setFont('Helvetica', 12)
c.drawString(100, 750, 'Subcontractor Performance Report')
c.drawString(100, 730, f'Vendor ID: {vendor_id}')
c.drawString(100, 710, f'Vendor Log Name: {vendor_log_name}')
c.drawString(100, 690, f'Quality Score: {scores["qualityScore"]}% ({get_feedback(scores["qualityScore"], "Quality")})')
c.drawString(100, 670, f'Timeliness Score: {scores["timelinessScore"]}% ({get_feedback(scores["timelinessScore"], "Timeliness")})')
c.drawString(100, 650, f'Safety Score: {scores["safetyScore"]}% ({get_feedback(scores["safetyScore"], "Safety")})')
c.drawString(100, 630, f'Communication Score: {scores["communicationScore"]}% ({get_feedback(scores["communicationScore"], "Communication")})')
c.save()
with open(filename, 'rb') as f:
pdf_content = f.read()
os.remove(filename)
return pdf_content
except Exception as e:
logger.error(f"Error generating PDF: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error generating PDF: {str(e)}")
def determine_alert_flag(scores: dict, all_logs: list):
try:
if not all_logs:
return False
avg_score = (scores['qualityScore'] + scores['timelinessScore'] +
scores['safetyScore'] + scores['communicationScore']) / 4
if avg_score < 50:
return True
lowest_avg = min([(log['scores']['qualityScore'] + log['scores']['timelinessScore'] +
log['scores']['safetyScore'] + log['scores']['communicationScore']) / 4
for log in all_logs], default=avg_score)
return avg_score == lowest_avg
except Exception as e:
logger.error(f"Error determining alert flag: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error determining alert flag: {str(e)}")
def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes, alert_flag: bool):
try:
# Create Subcontractor_Performance_Score__c record
score_record = sf.Subcontractor_Performance_Score__c.create({
'Vendor__c': log.vendorRecordId,
'Month__c': datetime.today().replace(day=1).strftime('%Y-%m-%d'),
'Quality_Score__c': scores['qualityScore'],
'Timeliness_Score__c': scores['timelinessScore'],
'Safety_Score__c': scores['safetyScore'],
'Communication_Score__c': scores['communicationScore'],
'Alert_Flag__c': alert_flag
})
score_record_id = score_record['id']
logger.info(f"Created Subcontractor_Performance_Score__c record with ID: {score_record_id}")
# Upload PDF as ContentVersion
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
content_version = sf.ContentVersion.create({
'Title': f'Performance_Report_{log.vendorId}',
'PathOnClient': f'report_{log.vendorId}.pdf',
'VersionData': pdf_base64,
'FirstPublishLocationId': score_record_id
})
logger.info(f"Uploaded PDF as ContentVersion for Vendor Log ID: {log.vendorLogId}")
# Get ContentDocumentId and construct URL
content_version_id = content_version['id']
content_version_record = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
if content_version_record['totalSize'] == 0:
logger.error(f"No ContentVersion found for ID: {content_version_id}")
raise HTTPException(status_code=500, detail="Failed to retrieve ContentDocumentId")
content_document_id = content_version_record['records'][0]['ContentDocumentId']
pdf_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_document_id}"
# Update Subcontractor_Performance_Score__c with PDF URL
sf.Subcontractor_Performance_Score__c.update(score_record_id, {
'Certification_URL__c': pdf_url
})
logger.info(f"Updated Subcontractor_Performance_Score__c with Certification_URL__c: {pdf_url}")
except Exception as e:
logger.error(f"Error storing scores in Salesforce: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error storing scores: {str(e)}")
@app.post('/score')
async def score_vendor(log: VendorLog, authorization: str = Header(None)):
try:
logger.info(f"Received Vendor Log: {log}")
scores = calculate_scores(log)
pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
alert_flag = determine_alert_flag(scores, vendor_logs)
store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
vendor_logs.append({
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'workDetails': log.workDetails,
'qualityReport': log.qualityReport,
'incidentLog': log.incidentLog,
'workCompletionDate': log.workCompletionDate,
'actualCompletionDate': log.actualCompletionDate,
'delayDays': log.delayDays,
'project': log.project,
'scores': scores,
'extracted': True
})
return {
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'qualityScore': scores['qualityScore'],
'timelinessScore': scores['timelinessScore'],
'safetyScore': scores['safetyScore'],
'communicationScore': scores['communicationScore'],
'pdfContent': pdf_base64,
'alert': alert_flag
}
except HTTPException as e:
raise e
except Exception as e:
logger.error(f"Error in /score endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error processing vendor log: {str(e)}")
@app.get('/', response_class=HTMLResponse)
async def get_dashboard():
try:
global vendor_logs
fetched_logs = fetch_vendor_logs_from_salesforce()
for log in fetched_logs:
if not any(existing_log['vendorLogId'] == log.vendorLogId for existing_log in vendor_logs):
scores = calculate_scores(log)
pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
alert_flag = determine_alert_flag(scores, vendor_logs)
store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
vendor_logs.append({
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'workDetails': log.workDetails,
'qualityReport': log.qualityReport,
'incidentLog': log.incidentLog,
'workCompletionDate': log.workCompletionDate,
'actualCompletionDate': log.actualCompletionDate,
'delayDays': log.delayDays,
'project': log.project,
'scores': scores,
'extracted': True
})
html_content = """
<html>
<head>
<title>Subcontractor Performance Score App</title>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css">
<style>
body { font-family: Arial, sans-serif; margin: 20px; background-color: #f4f4f9; }
.container { max-width: 1200px; }
table { width: 100%; border-collapse: collapse; margin-top: 20px; }
th, td { border: 1px solid #ddd; padding: 12px; text-align: left; }
th { background-color: #007bff; color: white; }
h1, h2 { text-align: center; color: #333; }
.generate-btn {
display: block; margin: 20px auto; padding: 10px 20px;
background-color: #4CAF50; color: white; border: none;
border-radius: 5px; cursor: pointer; font-size: 16px;
}
.generate-btn:hover { background-color: #45a049; }
.table-striped tbody tr:nth-of-type(odd) { background-color: #f9f9f9; }
</style>
<script>
async function generateScores() {
try {
const response = await fetch('/generate', { method: 'POST' });
if (response.ok) {
window.location.reload();
} else {
alert('Error generating scores');
}
} catch (error) {
alert('Error generating scores: ' + error.message);
}
}
</script>
</head>
<body>
<div class="container">
<h1>SUBCONTRACTOR PERFORMANCE SCORE APP</h1>
<h2>VENDOR LOGS SUBMISSION</h2>
<table class="table table-striped">
<thead>
<tr>
<th>Vendor ID</th>
<th>Vendor Log Name</th>
<th>Project</th>
<th>Work Completion %</th>
<th>Quality %</th>
<th>Incident Severity</th>
<th>Work Completion Date</th>
<th>Actual Completion Date</th>
<th>Delay Days</th>
</tr>
</thead>
<tbody>
"""
if not vendor_logs:
html_content += """
<tr>
<td colspan="9" style="text-align: center;">No vendor logs available</td>
</tr>
"""
else:
for log in vendor_logs:
html_content += f"""
<tr>
<td>{log['vendorId']}</td>
<td>{log['vendorLogName']}</td>
<td>{log['project']}</td>
<td>{log['workDetails']}</td>
<td>{log['qualityReport']}</td>
<td>{log['incidentLog']}</td>
<td>{log['workCompletionDate']}</td>
<td>{log['actualCompletionDate']}</td>
<td>{log['delayDays']}</td>
</tr>
"""
html_content += """
</tbody>
</table>
<button class="generate-btn" onclick="generateScores()">Generate Scores</button>
<h2>SUBCONTRACTOR PERFORMANCE SCORES</h2>
<table class="table table-striped">
<thead>
<tr>
<th>Vendor ID</th>
<th>Vendor Log Name</th>
<th>Project</th>
<th>Quality Score</th>
<th>Timeliness Score</th>
<th>Safety Score</th>
<th>Communication Score</th>
<th>Alert Flag</th>
</tr>
</thead>
<tbody>
"""
if not vendor_logs:
html_content += """
<tr>
<td colspan="8" style="text-align: center;">No scores available</td>
</tr>
"""
else:
for log in vendor_logs:
scores = log['scores']
alert_flag = determine_alert_flag(scores, vendor_logs)
html_content += f"""
<tr>
<td>{log['vendorId']}</td>
<td>{log['vendorLogName']}</td>
<td>{log['project']}</td>
<td>{scores['qualityScore']}%</td>
<td>{scores['timelinessScore']}%</td>
<td>{scores['safetyScore']}%</td>
<td>{scores['communicationScore']}%</td>
<td>{'Checked' if alert_flag else 'Unchecked'}</td>
</tr>
"""
html_content += """
</tbody>
</table>
</div>
</body>
</html>
"""
return HTMLResponse(content=html_content)
except HTTPException as e:
raise e
except Exception as e:
logger.error(f"Error in / endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error generating dashboard: {str(e)}")
@app.post('/generate')
async def generate_scores():
try:
global vendor_logs
vendor_logs = []
fetched_logs = fetch_vendor_logs_from_salesforce()
for log in fetched_logs:
scores = calculate_scores(log)
pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
alert_flag = determine_alert_flag(scores, vendor_logs)
store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
vendor_logs.append({
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'workDetails': log.workDetails,
'qualityReport': log.qualityReport,
'incidentLog': log.incidentLog,
'workCompletionDate': log.workCompletionDate,
'actualCompletionDate': log.actualCompletionDate,
'delayDays': log.delayDays,
'project': log.project,
'scores': scores,
'extracted': True
})
logger.info(f"Generated scores for {len(vendor_logs)} vendor logs")
return {"status": "success"}
except HTTPException as e:
raise e
except Exception as e:
logger.error(f"Error in /generate endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error generating scores: {str(e)}")
@app.get('/health')
async def health_check():
try:
# Test Salesforce connection
result = sf.query("SELECT Id FROM Vendor_Log__c LIMIT 1")
return {
"status": "healthy",
"salesforce_connection": "success",
"vendor_log_count": result['totalSize'],
"huggingface_enabled": USE_HUGGINGFACE
}
except Exception as e:
logger.error(f"Health check failed: {str(e)}")
return {
"status": "unhealthy",
"salesforce_connection": f"failed: {str(e)}",
"huggingface_enabled": USE_HUGGINGFACE
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |