File size: 25,321 Bytes
5cd0c37
 
 
 
 
 
 
 
 
 
7e08e15
 
 
 
 
5cd0c37
f1e3572
5cd0c37
 
 
 
 
f1e3572
 
 
 
5cd0c37
7e08e15
 
5cd0c37
f1e3572
 
 
 
 
 
5cd0c37
7e08e15
 
 
 
 
 
 
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e08e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd0c37
 
 
f1e3572
 
 
5cd0c37
7e08e15
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e3572
5cd0c37
 
f1e3572
5cd0c37
 
 
f1e3572
5cd0c37
7e08e15
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e08e15
f1e3572
5cd0c37
7e08e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e3572
5cd0c37
 
 
7e08e15
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e3572
5cd0c37
 
 
 
 
f1e3572
 
5cd0c37
 
f1e3572
 
 
5cd0c37
 
 
f1e3572
5cd0c37
 
 
f1e3572
5cd0c37
 
f1e3572
5cd0c37
 
 
 
 
 
 
f1e3572
5cd0c37
f1e3572
5cd0c37
 
 
 
 
 
 
f1e3572
5cd0c37
f1e3572
5cd0c37
 
f1e3572
 
 
5cd0c37
 
 
f1e3572
5cd0c37
f1e3572
5cd0c37
f1e3572
5cd0c37
 
f1e3572
5cd0c37
 
f1e3572
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e3572
 
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e08e15
5cd0c37
7e08e15
 
5cd0c37
7e08e15
 
 
5cd0c37
7e08e15
 
 
5cd0c37
 
7e08e15
5cd0c37
 
 
f1e3572
 
 
 
 
 
 
 
 
5cd0c37
 
 
 
 
7e08e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd0c37
 
 
 
7e08e15
 
 
5cd0c37
 
 
 
7e08e15
 
 
 
 
 
 
 
 
 
 
5cd0c37
 
 
7e08e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd0c37
 
 
 
7e08e15
 
 
5cd0c37
 
 
 
 
 
7e08e15
 
 
 
 
 
 
 
 
 
5cd0c37
 
 
7e08e15
 
 
5cd0c37
 
 
 
f1e3572
 
5cd0c37
 
 
 
 
 
 
 
 
f1e3572
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e3572
5cd0c37
f1e3572
 
5cd0c37
 
 
 
7e08e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd0c37
 
7e08e15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
from fastapi import FastAPI, HTTPException, Header
from pydantic import BaseModel
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import base64
import os
import logging
from datetime import datetime
from fastapi.responses import HTMLResponse
from simple_salesforce import Salesforce
import requests
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()

# Environment variables for Salesforce
SF_USERNAME = os.getenv("SF_USERNAME")
SF_PASSWORD = os.getenv("SF_PASSWORD")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
SF_DOMAIN = os.getenv("SF_DOMAIN", "login")
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
HUGGINGFACE_API_URL = os.getenv("HUGGINGFACE_API_URL")

# Validate environment variables
required_env_vars = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN"]
for var in required_env_vars:
    if not os.getenv(var):
        logger.error(f"Environment variable {var} is not set")
        raise ValueError(f"Environment variable {var} is not set")

# Optional Hugging Face validation
USE_HUGGINGFACE = HUGGINGFACE_API_KEY and HUGGINGFACE_API_URL
if USE_HUGGINGFACE:
    logger.info("Hugging Face integration enabled")
else:
    logger.info("Hugging Face integration disabled; using local scoring")

# Connect to Salesforce
try:
    sf = Salesforce(
        username=SF_USERNAME,
        password=SF_PASSWORD,
        security_token=SF_SECURITY_TOKEN,
        domain=SF_DOMAIN
    )
    logger.info("Successfully connected to Salesforce")
except Exception as e:
    logger.error(f"Failed to connect to Salesforce: {str(e)}")
    raise

# VendorLog model to match Salesforce data
class VendorLog(BaseModel):
    vendorLogId: str
    vendorId: str
    vendorRecordId: str
    workDetails: str
    qualityReport: str
    incidentLog: str
    workCompletionDate: str
    actualCompletionDate: str
    vendorLogName: str
    delayDays: int
    project: str

# Store vendor logs for display
vendor_logs = []

def validate_salesforce_fields():
    """Verify required fields exist in Salesforce"""
    try:
        # Check Vendor_Log__c fields
        vendor_log_desc = sf.Vendor_Log__c.describe()
        required_fields = [
            'Vendor__c', 'Work_Completion_Percentage__c', 'Quality_Percentage__c',
            'Incident_Severity__c', 'Work_Completion_Date__c', 'Actual_Completion_Date__c',
            'Delay_Days__c', 'Project__c'
        ]
        available_fields = [field['name'] for field in vendor_log_desc['fields']]
        for field in required_fields:
            if field not in available_fields:
                logger.error(f"Field {field} not found in Vendor_Log__c")
                raise ValueError(f"Field {field} not found in Vendor_Log__c")

        # Check Subcontractor_Performance_Score__c fields
        score_desc = sf.Subcontractor_Performance_Score__c.describe()
        required_score_fields = [
            'Vendor__c', 'Month__c', 'Quality_Score__c', 'Timeliness_Score__c',
            'Safety_Score__c', 'Communication_Score__c', 'Alert_Flag__c', 'Certification_URL__c'
        ]
        available_score_fields = [field['name'] for field in score_desc['fields']]
        for field in required_score_fields:
            if field not in available_score_fields:
                logger.error(f"Field {field} not found in Subcontractor_Performance_Score__c")
                raise ValueError(f"Field {field} not found in Subcontractor_Performance_Score__c")
        logger.info("All required Salesforce fields validated successfully")
    except Exception as e:
        logger.error(f"Error validating Salesforce fields: {str(e)}")
        raise

# Validate fields on startup
validate_salesforce_fields()

def fetch_vendor_logs_from_salesforce():
    try:
        query = """
        SELECT Id, Name, Vendor__c, Work_Completion_Percentage__c, Quality_Percentage__c, 
               Incident_Severity__c, Work_Completion_Date__c, Actual_Completion_Date__c, 
               Delay_Days__c, Project__c
        FROM Vendor_Log__c
        WHERE Vendor__c != null
        """
        result = sf.query_all(query)
        logs = []
        for record in result['records']:
            log = VendorLog(
                vendorLogId=record['Id'] or "Unknown",
                vendorId=record['Name'] or "Unknown",
                vendorRecordId=record['Vendor__c'] or "Unknown",
                workDetails=str(record['Work_Completion_Percentage__c'] or "0.0"),
                qualityReport=str(record['Quality_Percentage__c'] or "0.0"),
                incidentLog=record['Incident_Severity__c'] or "None",
                workCompletionDate=record['Work_Completion_Date__c'] or "N/A",
                actualCompletionDate=record['Actual_Completion_Date__c'] or "N/A",
                vendorLogName=record['Name'] or "Unknown",
                delayDays=int(record['Delay_Days__c'] or 0),
                project=record['Project__c'] or "Unknown"
            )
            logs.append(log)
        logger.info(f"Fetched {len(logs)} vendor logs from Salesforce")
        return logs
    except Exception as e:
        logger.error(f"Error fetching vendor logs from Salesforce: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error fetching vendor logs: {str(e)}")

def calculate_scores_local(log: VendorLog):
    try:
        work_completion_percentage = float(log.workDetails)
        quality_percentage = float(log.qualityReport)

        # Quality Score: Directly use the quality percentage
        quality_score = quality_percentage

        # Timeliness Score: Based on delay days
        timeliness_score = 100.0 if log.delayDays <= 0 else 80.0 if log.delayDays <= 3 else 60.0 if log.delayDays <= 7 else 40.0

        # Safety Score: Based on incident severity
        severity_map = {'None': 100.0, 'Low': 80.0, 'Minor': 80.0, 'Medium': 50.0, 'High': 20.0}
        safety_score = severity_map.get(log.incidentLog, 100.0)

        # Communication Score: Weighted average of other scores
        communication_score = (quality_score * 0.33 + timeliness_score * 0.33 + safety_score * 0.33)

        return {
            'qualityScore': round(quality_score, 2),
            'timelinessScore': round(timeliness_score, 2),
            'safetyScore': round(safety_score, 2),
            'communicationScore': round(communication_score, 2)
        }
    except Exception as e:
        logger.error(f"Error calculating local scores: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error calculating scores: {str(e)}")

def calculate_scores_huggingface(log: VendorLog):
    try:
        payload = {
            'vendor_id': log.vendorId,
            'delay_days': log.delayDays,
            'work_completion_percentage': float(log.workDetails),
            'quality_percentage': float(log.qualityReport),
            'incident_severity': log.incidentLog,
            'communication_frequency': 5  # Placeholder; adjust as needed
        }
        headers = {
            'Authorization': f'Bearer {HUGGINGFACE_API_KEY}',
            'Content-Type': 'application/json'
        }
        response = requests.post(HUGGINGFACE_API_URL, json=payload, headers=headers, timeout=30)
        response.raise_for_status()
        result = response.json()
        return {
            'qualityScore': round(result.get('quality_score', 0), 2),
            'timelinessScore': round(result.get('timeliness_score', 0), 2),
            'safetyScore': round(result.get('safety_score', 0), 2),
            'communicationScore': round(result.get('communication_score', 0), 2)
        }
    except Exception as e:
        logger.error(f"Error calculating Hugging Face scores: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error with Hugging Face API: {str(e)}")

def calculate_scores(log: VendorLog):
    if USE_HUGGINGFACE:
        return calculate_scores_huggingface(log)
    return calculate_scores_local(log)

def get_feedback(score: float, metric: str) -> str:
    try:
        if score >= 90:
            return "Excellent: Maintain this standard"
        elif score >= 70:
            return "Good: Keep up the good work"
        elif score >= 50:
            if metric == 'Timeliness':
                return "Needs Improvement: Maintain schedules to complete tasks on time"
            elif metric == 'Safety':
                return "Needs Improvement: Implement stricter safety protocols"
            elif metric == 'Quality':
                return "Needs Improvement: Focus on improving work quality"
            else:
                return "Needs Improvement: Enhance coordination with project teams"
        else:
            if metric == 'Timeliness':
                return "Poor: Significant delays detected"
            elif metric == 'Safety':
                return "Poor: Critical safety issues identified"
            elif metric == 'Quality':
                return "Poor: Quality standards not met"
            else:
                return "Poor: Communication issues detected"
    except Exception as e:
        logger.error(f"Error generating feedback: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error generating feedback: {str(e)}")

def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict):
    try:
        filename = f'report_{vendor_id}_{datetime.now().strftime("%Y%m%d%H%M%S")}.pdf'
        c = canvas.Canvas(filename, pagesize=letter)
        c.setFont('Helvetica', 12)
        c.drawString(100, 750, 'Subcontractor Performance Report')
        c.drawString(100, 730, f'Vendor ID: {vendor_id}')
        c.drawString(100, 710, f'Vendor Log Name: {vendor_log_name}')
        c.drawString(100, 690, f'Quality Score: {scores["qualityScore"]}% ({get_feedback(scores["qualityScore"], "Quality")})')
        c.drawString(100, 670, f'Timeliness Score: {scores["timelinessScore"]}% ({get_feedback(scores["timelinessScore"], "Timeliness")})')
        c.drawString(100, 650, f'Safety Score: {scores["safetyScore"]}% ({get_feedback(scores["safetyScore"], "Safety")})')
        c.drawString(100, 630, f'Communication Score: {scores["communicationScore"]}% ({get_feedback(scores["communicationScore"], "Communication")})')
        c.save()

        with open(filename, 'rb') as f:
            pdf_content = f.read()
        os.remove(filename)
        return pdf_content
    except Exception as e:
        logger.error(f"Error generating PDF: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error generating PDF: {str(e)}")

def determine_alert_flag(scores: dict, all_logs: list):
    try:
        if not all_logs:
            return False
        avg_score = (scores['qualityScore'] + scores['timelinessScore'] + 
                     scores['safetyScore'] + scores['communicationScore']) / 4
        if avg_score < 50:
            return True
        lowest_avg = min([(log['scores']['qualityScore'] + log['scores']['timelinessScore'] + 
                           log['scores']['safetyScore'] + log['scores']['communicationScore']) / 4 
                          for log in all_logs], default=avg_score)
        return avg_score == lowest_avg
    except Exception as e:
        logger.error(f"Error determining alert flag: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error determining alert flag: {str(e)}")

def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes, alert_flag: bool):
    try:
        # Create Subcontractor_Performance_Score__c record
        score_record = sf.Subcontractor_Performance_Score__c.create({
            'Vendor__c': log.vendorRecordId,
            'Month__c': datetime.today().replace(day=1).strftime('%Y-%m-%d'),
            'Quality_Score__c': scores['qualityScore'],
            'Timeliness_Score__c': scores['timelinessScore'],
            'Safety_Score__c': scores['safetyScore'],
            'Communication_Score__c': scores['communicationScore'],
            'Alert_Flag__c': alert_flag
        })
        score_record_id = score_record['id']
        logger.info(f"Created Subcontractor_Performance_Score__c record with ID: {score_record_id}")

        # Upload PDF as ContentVersion
        pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
        content_version = sf.ContentVersion.create({
            'Title': f'Performance_Report_{log.vendorId}',
            'PathOnClient': f'report_{log.vendorId}.pdf',
            'VersionData': pdf_base64,
            'FirstPublishLocationId': score_record_id
        })
        logger.info(f"Uploaded PDF as ContentVersion for Vendor Log ID: {log.vendorLogId}")

        # Get ContentDocumentId and construct URL
        content_version_id = content_version['id']
        content_version_record = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
        if content_version_record['totalSize'] == 0:
            logger.error(f"No ContentVersion found for ID: {content_version_id}")
            raise HTTPException(status_code=500, detail="Failed to retrieve ContentDocumentId")
        content_document_id = content_version_record['records'][0]['ContentDocumentId']
        pdf_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_document_id}"

        # Update Subcontractor_Performance_Score__c with PDF URL
        sf.Subcontractor_Performance_Score__c.update(score_record_id, {
            'Certification_URL__c': pdf_url
        })
        logger.info(f"Updated Subcontractor_Performance_Score__c with Certification_URL__c: {pdf_url}")
    except Exception as e:
        logger.error(f"Error storing scores in Salesforce: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error storing scores: {str(e)}")

@app.post('/score')
async def score_vendor(log: VendorLog, authorization: str = Header(None)):
    try:
        logger.info(f"Received Vendor Log: {log}")
        scores = calculate_scores(log)
        pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
        pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
        alert_flag = determine_alert_flag(scores, vendor_logs)
        store_scores_in_salesforce(log, scores, pdf_content, alert_flag)

        vendor_logs.append({
            'vendorLogId': log.vendorLogId,
            'vendorId': log.vendorId,
            'vendorLogName': log.vendorLogName,
            'workDetails': log.workDetails,
            'qualityReport': log.qualityReport,
            'incidentLog': log.incidentLog,
            'workCompletionDate': log.workCompletionDate,
            'actualCompletionDate': log.actualCompletionDate,
            'delayDays': log.delayDays,
            'project': log.project,
            'scores': scores,
            'extracted': True
        })

        return {
            'vendorLogId': log.vendorLogId,
            'vendorId': log.vendorId,
            'vendorLogName': log.vendorLogName,
            'qualityScore': scores['qualityScore'],
            'timelinessScore': scores['timelinessScore'],
            'safetyScore': scores['safetyScore'],
            'communicationScore': scores['communicationScore'],
            'pdfContent': pdf_base64,
            'alert': alert_flag
        }
    except HTTPException as e:
        raise e
    except Exception as e:
        logger.error(f"Error in /score endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error processing vendor log: {str(e)}")

@app.get('/', response_class=HTMLResponse)
async def get_dashboard():
    try:
        global vendor_logs
        fetched_logs = fetch_vendor_logs_from_salesforce()
        for log in fetched_logs:
            if not any(existing_log['vendorLogId'] == log.vendorLogId for existing_log in vendor_logs):
                scores = calculate_scores(log)
                pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
                pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
                alert_flag = determine_alert_flag(scores, vendor_logs)
                store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
                vendor_logs.append({
                    'vendorLogId': log.vendorLogId,
                    'vendorId': log.vendorId,
                    'vendorLogName': log.vendorLogName,
                    'workDetails': log.workDetails,
                    'qualityReport': log.qualityReport,
                    'incidentLog': log.incidentLog,
                    'workCompletionDate': log.workCompletionDate,
                    'actualCompletionDate': log.actualCompletionDate,
                    'delayDays': log.delayDays,
                    'project': log.project,
                    'scores': scores,
                    'extracted': True
                })

        html_content = """
        <html>
            <head>
                <title>Subcontractor Performance Score App</title>
                <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css">
                <style>
                    body { font-family: Arial, sans-serif; margin: 20px; background-color: #f4f4f9; }
                    .container { max-width: 1200px; }
                    table { width: 100%; border-collapse: collapse; margin-top: 20px; }
                    th, td { border: 1px solid #ddd; padding: 12px; text-align: left; }
                    th { background-color: #007bff; color: white; }
                    h1, h2 { text-align: center; color: #333; }
                    .generate-btn { 
                        display: block; margin: 20px auto; padding: 10px 20px; 
                        background-color: #4CAF50; color: white; border: none; 
                        border-radius: 5px; cursor: pointer; font-size: 16px; 
                    }
                    .generate-btn:hover { background-color: #45a049; }
                    .table-striped tbody tr:nth-of-type(odd) { background-color: #f9f9f9; }
                </style>
                <script>
                    async function generateScores() {
                        try {
                            const response = await fetch('/generate', { method: 'POST' });
                            if (response.ok) {
                                window.location.reload();
                            } else {
                                alert('Error generating scores');
                            }
                        } catch (error) {
                            alert('Error generating scores: ' + error.message);
                        }
                    }
                </script>
            </head>
            <body>
                <div class="container">
                    <h1>SUBCONTRACTOR PERFORMANCE SCORE APP</h1>
                    <h2>VENDOR LOGS SUBMISSION</h2>
                    <table class="table table-striped">
                        <thead>
                            <tr>
                                <th>Vendor ID</th>
                                <th>Vendor Log Name</th>
                                <th>Project</th>
                                <th>Work Completion %</th>
                                <th>Quality %</th>
                                <th>Incident Severity</th>
                                <th>Work Completion Date</th>
                                <th>Actual Completion Date</th>
                                <th>Delay Days</th>
                            </tr>
                        </thead>
                        <tbody>
        """

        if not vendor_logs:
            html_content += """
                            <tr>
                                <td colspan="9" style="text-align: center;">No vendor logs available</td>
                            </tr>
            """
        else:
            for log in vendor_logs:
                html_content += f"""
                            <tr>
                                <td>{log['vendorId']}</td>
                                <td>{log['vendorLogName']}</td>
                                <td>{log['project']}</td>
                                <td>{log['workDetails']}</td>
                                <td>{log['qualityReport']}</td>
                                <td>{log['incidentLog']}</td>
                                <td>{log['workCompletionDate']}</td>
                                <td>{log['actualCompletionDate']}</td>
                                <td>{log['delayDays']}</td>
                            </tr>
                """

        html_content += """
                        </tbody>
                    </table>
                    <button class="generate-btn" onclick="generateScores()">Generate Scores</button>
                    <h2>SUBCONTRACTOR PERFORMANCE SCORES</h2>
                    <table class="table table-striped">
                        <thead>
                            <tr>
                                <th>Vendor ID</th>
                                <th>Vendor Log Name</th>
                                <th>Project</th>
                                <th>Quality Score</th>
                                <th>Timeliness Score</th>
                                <th>Safety Score</th>
                                <th>Communication Score</th>
                                <th>Alert Flag</th>
                            </tr>
                        </thead>
                        <tbody>
        """

        if not vendor_logs:
            html_content += """
                            <tr>
                                <td colspan="8" style="text-align: center;">No scores available</td>
                            </tr>
            """
        else:
            for log in vendor_logs:
                scores = log['scores']
                alert_flag = determine_alert_flag(scores, vendor_logs)
                html_content += f"""
                            <tr>
                                <td>{log['vendorId']}</td>
                                <td>{log['vendorLogName']}</td>
                                <td>{log['project']}</td>
                                <td>{scores['qualityScore']}%</td>
                                <td>{scores['timelinessScore']}%</td>
                                <td>{scores['safetyScore']}%</td>
                                <td>{scores['communicationScore']}%</td>
                                <td>{'Checked' if alert_flag else 'Unchecked'}</td>
                            </tr>
                """

        html_content += """
                        </tbody>
                    </table>
                </div>
            </body>
        </html>
        """
        return HTMLResponse(content=html_content)
    except HTTPException as e:
        raise e
    except Exception as e:
        logger.error(f"Error in / endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error generating dashboard: {str(e)}")

@app.post('/generate')
async def generate_scores():
    try:
        global vendor_logs
        vendor_logs = []
        fetched_logs = fetch_vendor_logs_from_salesforce()
        for log in fetched_logs:
            scores = calculate_scores(log)
            pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
            pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
            alert_flag = determine_alert_flag(scores, vendor_logs)
            store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
            vendor_logs.append({
                'vendorLogId': log.vendorLogId,
                'vendorId': log.vendorId,
                'vendorLogName': log.vendorLogName,
                'workDetails': log.workDetails,
                'qualityReport': log.qualityReport,
                'incidentLog': log.incidentLog,
                'workCompletionDate': log.workCompletionDate,
                'actualCompletionDate': log.actualCompletionDate,
                'delayDays': log.delayDays,
                'project': log.project,
                'scores': scores,
                'extracted': True
            })
        logger.info(f"Generated scores for {len(vendor_logs)} vendor logs")
        return {"status": "success"}
    except HTTPException as e:
        raise e
    except Exception as e:
        logger.error(f"Error in /generate endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error generating scores: {str(e)}")

@app.get('/health')
async def health_check():
    try:
        # Test Salesforce connection
        result = sf.query("SELECT Id FROM Vendor_Log__c LIMIT 1")
        return {
            "status": "healthy",
            "salesforce_connection": "success",
            "vendor_log_count": result['totalSize'],
            "huggingface_enabled": USE_HUGGINGFACE
        }
    except Exception as e:
        logger.error(f"Health check failed: {str(e)}")
        return {
            "status": "unhealthy",
            "salesforce_connection": f"failed: {str(e)}",
            "huggingface_enabled": USE_HUGGINGFACE
        }

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)