projectApp / app.py
Swathi6's picture
Update app.py
a94f5c9 verified
raw
history blame
23.5 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import base64
import os
import logging
from datetime import datetime
from fastapi.responses import HTMLResponse
from simple_salesforce import Salesforce
from dotenv import load_dotenv
from datasets import load_dataset # Added for Hugging Face
# Load environment variables
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
app = FastAPI()
# Environment variables from .env
SF_USERNAME = os.getenv("SF_USERNAME")
SF_PASSWORD = os.getenv("SF_PASSWORD")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
SF_DOMAIN = os.getenv("SF_DOMAIN", "login")
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
# Validate environment variables
required_env_vars = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN"]
for var in required_env_vars:
if not os.getenv(var):
logger.error(f"Environment variable {var} is not set")
raise ValueError(f"Environment variable {var} is not set")
# Check Hugging Face configuration
USE_HUGGINGFACE = bool(HUGGINGFACE_API_KEY and HUGGINGFACE_API_KEY != "your_huggingface_api_key_here")
logger.info(f"Hugging Face integration {'enabled' if USE_HUGGINGFACE else 'disabled'}")
# Salesforce connection
sf = None
try:
sf = Salesforce(
username=SF_USERNAME,
password=SF_PASSWORD,
security_token=SF_SECURITY_TOKEN,
domain=SF_DOMAIN
)
logger.info("Successfully connected to Salesforce")
except Exception as e:
logger.error(f"Failed to connect to Salesforce: {str(e)}")
raise RuntimeError(f"Cannot connect to Salesforce: {str(e)}")
# VendorLog model
class VendorLog(BaseModel):
vendorLogId: str
vendorId: str
vendorRecordId: str
workDetails: str
qualityReport: str
incidentLog: str
workCompletionDate: str
actualCompletionDate: str
vendorLogName: str
delayDays: int
project: str
# Store vendor logs
vendor_logs = []
# New function to fetch records from Hugging Face
def fetch_huggingface_records(dataset_name: str = "imdb"):
"""Fetch a dataset from Hugging Face and return its records."""
if not USE_HUGGINGFACE:
logger.warning("Hugging Face integration is disabled. Cannot fetch records.")
return []
try:
# Set Hugging Face token for authentication
os.environ["HUGGINGFACE_TOKEN"] = HUGGINGFACE_API_KEY
dataset = load_dataset(dataset_name)
logger.info(f"Successfully fetched dataset: {dataset_name}")
# Example: Convert dataset to a list of records (adjust based on dataset structure)
records = [record for record in dataset['train']] # Assuming 'train' split
return records[:10] # Limit to 10 records for demonstration
except Exception as e:
logger.error(f"Error fetching Hugging Face dataset {dataset_name}: {str(e)}")
return []
def validate_salesforce_fields():
"""Validate required Salesforce fields"""
try:
vendor_log_fields = [f['name'] for f in sf.Vendor_Log__c.describe()['fields']]
required_fields = [
'Vendor__c', 'Work_Completion_Percentage__c', 'Quality_Percentage__c',
'Incident_Severity__c', 'Work_Completion_Date__c', 'Actual_Completion_Date__c',
'Delay_Days__c', 'Project__c'
]
for field in required_fields:
if field not in vendor_log_fields:
logger.error(f"Field {field} not found in Vendor_Log__c")
raise ValueError(f"Field {field} not found in Vendor_Log__c")
score_fields = [f['name'] for f in sf.Subcontractor_Performance_Score__c.describe()['fields']]
required_score_fields = [
'Vendor__c', 'Month__c', 'Quality_Score__c', 'Timeliness_Score__c',
'Safety_Score__c', 'Communication_Score__c', 'Alert_Flag__c'
# Removed 'Certification_URL__c' to avoid error
]
for field in required_score_fields:
if field not in score_fields:
logger.error(f"Field {field} not found in Subcontractor_Performance_Score__c")
raise ValueError(f"Field {field} not found in Subcontractor_Performance_Score__c")
logger.info("Salesforce fields validated successfully")
except Exception as e:
logger.error(f"Error validating Salesforce fields: {str(e)}")
raise
# Validate schema on startup
validate_salesforce_fields()
def fetch_vendor_logs_from_salesforce():
try:
query = """
SELECT Id, Name, Vendor__c, Work_Completion_Percentage__c, Quality_Percentage__c,
Incident_Severity__c, Work_Completion_Date__c, Actual_Completion_Date__c,
Delay_Days__c, Project__c
FROM Vendor_Log__c
WHERE Vendor__c != null
"""
result = sf.query_all(query)
logs = []
for record in result['records']:
try:
log = VendorLog(
vendorLogId=record.get('Id', 'Unknown'),
vendorId=record.get('Name', 'Unknown'),
vendorRecordId=record.get('Vendor__c', 'Unknown'),
workDetails=str(record.get('Work_Completion_Percentage__c', 0.0)),
qualityReport=str(record.get('Quality_Percentage__c', 0.0)),
incidentLog=record.get('Incident_Severity__c', 'None'),
workCompletionDate=record.get('Work_Completion_Date__c', 'N/A'),
actualCompletionDate=record.get('Actual_Completion_Date__c', 'N/A'),
vendorLogName=record.get('Name', 'Unknown'),
delayDays=int(record.get('Delay_Days__c', 0)),
project=record.get('Project__c', 'Unknown')
)
logs.append(log)
except Exception as e:
logger.warning(f"Skipping invalid Vendor_Log__c record {record.get('Id')}: {str(e)}")
logger.info(f"Fetched {len(logs)} vendor logs")
return logs
except Exception as e:
logger.error(f"Error fetching vendor logs: {str(e)}")
return []
def calculate_scores_local(log: VendorLog):
try:
work_completion_percentage = float(log.workDetails or 0.0)
quality_percentage = float(log.qualityReport or 0.0)
quality_score = quality_percentage
timeliness_score = 100.0 if log.delayDays <= 0 else 80.0 if log.delayDays <= 3 else 60.0 if log.delayDays <= 7 else 40.0
severity_map = {'None': 100.0, 'Low': 80.0, 'Minor': 80.0, 'Medium': 50.0, 'High': 20.0}
safety_score = severity_map.get(log.incidentLog, 100.0)
communication_score = (quality_score * 0.33 + timeliness_score * 0.33 + safety_score * 0.33)
return {
'qualityScore': round(quality_score, 2),
'timelinessScore': round(timeliness_score, 2),
'safetyScore': round(safety_score, 2),
'communicationScore': round(communication_score, 2)
}
except Exception as e:
logger.error(f"Error calculating local scores: {str(e)}")
return {'qualityScore': 0.0, 'timelinessScore': 0.0, 'safetyScore': 0.0, 'communicationScore': 0.0}
def calculate_scores(log: VendorLog):
if USE_HUGGINGFACE:
# Example: Use Hugging Face model for score enhancement (placeholder)
logger.info("Using Hugging Face for score calculation (placeholder)")
return calculate_scores_local(log) # Replace with actual Hugging Face logic if needed
else:
return calculate_scores_local(log)
def get_feedback(score: float, metric: str) -> str:
try:
if score >= 90:
return "Excellent: Maintain this standard"
elif score >= 70:
return "Good: Keep up the good work"
elif score >= 50:
return f"Needs Improvement: {'Maintain schedules' if metric == 'Timeliness' else 'Improve quality' if metric == 'Quality' else 'Enhance safety' if metric == 'Safety' else 'Better communication'}"
else:
return f"Poor: {'Significant delays' if metric == 'Timeliness' else 'Quality issues' if metric == 'Quality' else 'Safety issues' if metric == 'Safety' else 'Communication issues'}"
except Exception:
return "Feedback unavailable"
def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict):
try:
filename = f'report_{vendor_id}_{datetime.now().strftime("%Y%m%d%H%M%S")}.pdf'
c = canvas.Canvas(filename, pagesize=letter)
c.setFont('Helvetica', 12)
c.drawString(100, 750, 'Subcontractor Performance Report')
c.drawString(100, 730, f'Vendor ID: {vendor_id}')
c.drawString(100, 710, f'Vendor Log Name: {vendor_log_name}')
c.drawString(100, 690, f'Quality Score: {scores["qualityScore"]}% ({get_feedback(scores["qualityScore"], "Quality")})')
c.drawString(100, 670, f'Timeliness Score: {scores["timelinessScore"]}% ({get_feedback(scores["timelinessScore"], "Timeliness")})')
c.drawString(100, 650, f'Safety Score: {scores["safetyScore"]}% ({get_feedback(scores["safetyScore"], "Safety")})')
c.drawString(100, 630, f'Communication Score: {scores["communicationScore"]}% ({get_feedback(scores["communicationScore"], "Communication")})')
c.save()
with open(filename, 'rb') as f:
pdf_content = f.read()
os.remove(filename)
return pdf_content
except Exception as e:
logger.error(f"Error generating PDF: {str(e)}")
raise HTTPException(status_code=500, detail="Failed to generate PDF")
def determine_alert_flag(scores: dict, all_logs: list):
try:
if not all_logs:
return False
avg_score = sum(scores.values()) / 4
if avg_score < 50:
return True
lowest_avg = min([sum(log['scores'].values()) / 4 for log in all_logs], default=avg_score)
return avg_score == lowest_avg
except Exception as e:
logger.error(f"Error determining alert flag: {str(e)}")
return False
def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes, alert_flag: bool):
try:
score_record = sf.Subcontractor_Performance_Score__c.create({
'Vendor__c': log.vendorRecordId,
'Month__c': datetime.today().replace(day=1).strftime('%Y-%m-%d'),
'Quality_Score__c': scores['qualityScore'],
'Timeliness_Score__c': scores['timelinessScore'],
'Safety_Score__c': scores['safetyScore'],
'Communication_Score__c': scores['communicationScore'],
'Alert_Flag__c': alert_flag
})
score_record_id = score_record['id']
logger.info(f"Created score record: {score_record_id}")
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
content_version = sf.ContentVersion.create({
'Title': f'Performance_Report_{log.vendorId}',
'PathOnClient': f'report_{log.vendorId}.pdf',
'VersionData': pdf_base64,
'FirstPublishLocationId': score_record_id
})
content_version_id = content_version['id']
content_version_record = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
if content_version_record['totalSize'] == 0:
logger.error(f"No ContentVersion for ID: {content_version_id}")
raise ValueError("Failed to retrieve ContentDocumentId")
content_document_id = content_version_record['records'][0]['ContentDocumentId']
pdf_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_document_id}"
# Comment out Certification_URL__c update to avoid error
# sf.Subcontractor_Performance_Score__c.update(score_record_id, {'Certification_URL__c': pdf_url})
logger.info(f"Updated score record with PDF (URL not stored due to missing field)")
except Exception as e:
logger.error(f"Error storing scores in Salesforce: {str(e)}")
raise HTTPException(status_code=500, detail="Failed to store scores")
@app.post('/score')
async def score_vendor(log: VendorLog):
try:
scores = calculate_scores(log)
pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
alert_flag = determine_alert_flag(scores, vendor_logs)
store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
vendor_logs.append({
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'workDetails': log.workDetails,
'qualityReport': log.qualityReport,
'incidentLog': log.incidentLog,
'workCompletionDate': log.workCompletionDate,
'actualCompletionDate': log.actualCompletionDate,
'delayDays': log.delayDays,
'project': log.project,
'scores': scores,
'extracted': True
})
return {
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'qualityScore': scores['qualityScore'],
'timelinessScore': scores['timelinessScore'],
'safetyScore': scores['safetyScore'],
'communicationScore': scores['communicationScore'],
'pdfContent': pdf_base64,
'alert': alert_flag
}
except HTTPException as e:
raise e
except Exception as e:
logger.error(f"Error in /score: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error processing vendor log: {str(e)}")
@app.get('/', response_class=HTMLResponse)
async def get_dashboard():
try:
global vendor_logs
fetched_logs = fetch_vendor_logs_from_salesforce()
for log in fetched_logs:
if not any(existing_log['vendorLogId'] == log.vendorLogId for existing_log in vendor_logs):
scores = calculate_scores(log)
pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
alert_flag = determine_alert_flag(scores, vendor_logs)
store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
vendor_logs.append({
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'workDetails': log.workDetails,
'qualityReport': log.qualityReport,
'incidentLog': log.incidentLog,
'workCompletionDate': log.workCompletionDate,
'actualCompletionDate': log.actualCompletionDate,
'delayDays': log.delayDays,
'project': log.project,
'scores': scores,
'extracted': True
})
html_content = """
<html>
<head>
<title>Subcontractor Performance Score App</title>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css">
<style>
body { font-family: Arial, sans-serif; background-color: #f4f4f9; }
.container { max-width: 1200px; margin: 20px auto; }
h1, h2 { text-align: center; color: #333; }
.table { margin-top: 20px; }
.generate-btn {
display: block; margin: 20px auto; padding: 10px 20px;
background-color: #4CAF50; color: white; border: none;
border-radius: 5px; cursor: pointer;
}
.generate-btn:hover { background-color: #45a049; }
</style>
<script>
async function generateScores() {
try {
const response = await fetch('/generate', { method: 'POST' });
if (response.ok) {
window.location.reload();
} else {
alert('Error generating scores');
}
} catch (error) {
alert('Error: ' + error.message);
}
}
</script>
</head>
<body>
<div class="container">
<h1>Subcontractor Performance Score App</h1>
<h2>Vendor Logs</h2>
<table class="table table-striped">
<thead>
<tr>
<th>Vendor ID</th>
<th>Vendor Log Name</th>
<th>Project</th>
<th>Work Completion %</th>
<th>Quality %</th>
<th>Incident Severity</th>
<th>Work Completion Date</th>
<th>Actual Completion Date</th>
<th>Delay Days</th>
</tr>
</thead>
<tbody>
"""
if not vendor_logs:
html_content += '<tr><td colspan="9" class="text-center">No vendor logs available</td></tr>'
else:
for log in vendor_logs:
html_content += f"""
<tr>
<td>{log['vendorId']}</td>
<td>{log['vendorLogName']}</td>
<td>{log['project']}</td>
<td>{log['workDetails']}</td>
<td>{log['qualityReport']}</td>
<td>{log['incidentLog']}</td>
<td>{log['workCompletionDate']}</td>
<td>{log['actualCompletionDate']}</td>
<td>{log['delayDays']}</td>
</tr>
"""
html_content += """
</tbody>
</table>
<button class="generate-btn" onclick="generateScores()">Generate Scores</button>
<h2>Performance Scores</h2>
<table class="table table-striped">
<thead>
<tr>
<th>Vendor ID</th>
<th>Vendor Log Name</th>
<th>Project</th>
<th>Quality Score</th>
<th>Timeliness Score</th>
<th>Safety Score</th>
<th>Communication Score</th>
<th>Alert Flag</th>
</tr>
</thead>
<tbody>
"""
if not vendor_logs:
html_content += '<tr><td colspan="8" class="text-center">No scores available</td></tr>'
else:
for log in vendor_logs:
scores = log['scores']
alert_flag = determine_alert_flag(scores, vendor_logs)
html_content += f"""
<tr>
<td>{log['vendorId']}</td>
<td>{log['vendorLogName']}</td>
<td>{log['project']}</td>
<td>{scores['qualityScore']}%</td>
<td>{scores['timelinessScore']}%</td>
<td>{scores['safetyScore']}%</td>
<td>{scores['communicationScore']}%</td>
<td>{'Checked' if alert_flag else 'Unchecked'}</td>
</tr>
"""
html_content += """
</tbody>
</table>
</div>
</body>
</html>
"""
return HTMLResponse(content=html_content)
except Exception as e:
logger.error(f"Error in /: {str(e)}")
return HTMLResponse(content="<h1>Error</h1><p>Failed to load dashboard. Check logs for details.</p>", status_code=500)
@app.post('/generate')
async def generate_scores():
try:
global vendor_logs
vendor_logs = []
fetched_logs = fetch_vendor_logs_from_salesforce()
for log in fetched_logs:
scores = calculate_scores(log)
pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
alert_flag = determine_alert_flag(scores, vendor_logs)
store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
vendor_logs.append({
'vendorLogId': log.vendorLogId,
'vendorId': log.vendorId,
'vendorLogName': log.vendorLogName,
'workDetails': log.workDetails,
'qualityReport': log.qualityReport,
'incidentLog': log.incidentLog,
'workCompletionDate': log.workCompletionDate,
'actualCompletionDate': log.actualCompletionDate,
'delayDays': log.delayDays,
'project': log.project,
'scores': scores,
'extracted': True
})
logger.info(f"Generated scores for {len(vendor_logs)} logs")
return {"status": "success"}
except Exception as e:
logger.error(f"Error in /generate: {str(e)}")
raise HTTPException(status_code=500, detail="Failed to generate scores")
@app.get('/debug')
async def debug_info():
try:
log_count = sf.query("SELECT COUNT() FROM Vendor_Log__c")['totalSize']
fields = [f['name'] for f in sf.Vendor_Log__c.describe()['fields']]
score_fields = [f['name'] for f in sf.Subcontractor_Performance_Score__c.describe()['fields']]
# Fetch sample Hugging Face records for debugging
hf_records = fetch_huggingface_records() if USE_HUGGINGFACE else []
return {
"salesforce_connected": True,
"vendor_log_count": log_count,
"vendor_log_fields": fields,
"score_fields": score_fields,
"huggingface_enabled": USE_HUGGINGFACE,
"huggingface_records_sample": hf_records
}
except Exception as e:
logger.error(f"Debug error: {str(e)}")
return {"salesforce_connected": False, "error": str(e)}
@app.get('/huggingface-records')
async def get_huggingface_records():
"""New endpoint to fetch and return Hugging Face records."""
try:
records = fetch_huggingface_records()
if not records:
raise HTTPException(status_code=404, detail="No records fetched from Hugging Face")
return {"records": records}
except Exception as e:
logger.error(f"Error fetching Hugging Face records: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to fetch Hugging Face records: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)