Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,27 +8,34 @@ import logging
|
|
8 |
from datetime import datetime
|
9 |
from fastapi.responses import HTMLResponse
|
10 |
from simple_salesforce import Salesforce
|
11 |
-
import
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
|
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
app = FastAPI()
|
18 |
|
19 |
-
#
|
20 |
-
SF_USERNAME = os.getenv("SF_USERNAME"
|
21 |
-
SF_PASSWORD = os.getenv("SF_PASSWORD"
|
22 |
-
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN"
|
23 |
SF_DOMAIN = os.getenv("SF_DOMAIN", "login")
|
24 |
-
|
25 |
-
# Verify API key is set
|
26 |
API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
27 |
-
if not API_KEY:
|
28 |
-
logger.error("HUGGINGFACE_API_KEY environment variable not set")
|
29 |
-
raise ValueError("HUGGINGFACE_API_KEY environment variable not set")
|
30 |
|
31 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
try:
|
33 |
sf = Salesforce(
|
34 |
username=SF_USERNAME,
|
@@ -39,9 +46,9 @@ try:
|
|
39 |
logger.info("Successfully connected to Salesforce")
|
40 |
except Exception as e:
|
41 |
logger.error(f"Failed to connect to Salesforce: {str(e)}")
|
42 |
-
raise
|
43 |
|
44 |
-
# VendorLog model
|
45 |
class VendorLog(BaseModel):
|
46 |
vendorLogId: str
|
47 |
vendorId: str
|
@@ -55,15 +62,58 @@ class VendorLog(BaseModel):
|
|
55 |
delayDays: int
|
56 |
project: str
|
57 |
|
58 |
-
# Store vendor logs
|
59 |
vendor_logs = []
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def fetch_vendor_logs_from_salesforce():
|
62 |
try:
|
63 |
query = """
|
64 |
-
SELECT Id, Name, Vendor__c, Work_Completion_Percentage__c, Quality_Percentage__c,
|
65 |
-
Work_Completion_Date__c, Actual_Completion_Date__c,
|
66 |
-
|
67 |
FROM Vendor_Log__c
|
68 |
"""
|
69 |
result = sf.query_all(query)
|
@@ -73,43 +123,36 @@ def fetch_vendor_logs_from_salesforce():
|
|
73 |
logger.warning(f"Skipping Vendor_Log__c record with ID {record['Id']} due to missing Vendor__c")
|
74 |
continue
|
75 |
log = VendorLog(
|
76 |
-
vendorLogId=record
|
77 |
-
vendorId=record
|
78 |
-
vendorRecordId=record
|
79 |
-
workDetails=str(record
|
80 |
-
qualityReport=str(record
|
81 |
-
incidentLog=record
|
82 |
-
workCompletionDate=record
|
83 |
-
actualCompletionDate=record
|
84 |
-
vendorLogName=record
|
85 |
-
delayDays=int(record
|
86 |
-
|
87 |
)
|
88 |
logs.append(log)
|
|
|
89 |
return logs
|
90 |
except Exception as e:
|
91 |
logger.error(f"Error fetching vendor logs from Salesforce: {str(e)}")
|
92 |
-
raise
|
93 |
|
94 |
def calculate_scores(log: VendorLog):
|
95 |
try:
|
96 |
-
work_completion_percentage = float(log.workDetails)
|
97 |
-
quality_percentage = float(log.qualityReport)
|
98 |
|
99 |
-
# Quality Score: Directly use the quality percentage
|
100 |
quality_score = quality_percentage
|
101 |
-
|
102 |
-
# Timeliness Score: Based on delay days
|
103 |
timeliness_score = 100.0 if log.delayDays <= 0 else 80.0 if log.delayDays <= 3 else 60.0 if log.delayDays <= 7 else 40.0
|
104 |
-
|
105 |
-
# Safety Score: Based on incident severity
|
106 |
severity_map = {'None': 100.0, 'Low': 80.0, 'Minor': 80.0, 'Medium': 50.0, 'High': 20.0}
|
107 |
safety_score = severity_map.get(log.incidentLog, 100.0)
|
108 |
-
|
109 |
-
# Communication Score: Weighted average of other scores
|
110 |
communication_score = (quality_score * 0.33 + timeliness_score * 0.33 + safety_score * 0.33)
|
111 |
|
112 |
-
# Removed finalScore calculation since Final_Score__c is a Formula field
|
113 |
return {
|
114 |
'qualityScore': round(quality_score, 2),
|
115 |
'timelinessScore': round(timeliness_score, 2),
|
@@ -118,7 +161,7 @@ def calculate_scores(log: VendorLog):
|
|
118 |
}
|
119 |
except Exception as e:
|
120 |
logger.error(f"Error calculating scores: {str(e)}")
|
121 |
-
raise
|
122 |
|
123 |
def get_feedback(score: float, metric: str) -> str:
|
124 |
try:
|
@@ -146,11 +189,11 @@ def get_feedback(score: float, metric: str) -> str:
|
|
146 |
return "Poor: Communication issues detected"
|
147 |
except Exception as e:
|
148 |
logger.error(f"Error generating feedback: {str(e)}")
|
149 |
-
|
150 |
|
151 |
def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict):
|
152 |
try:
|
153 |
-
filename = f'report_{vendor_id}.pdf'
|
154 |
c = canvas.Canvas(filename, pagesize=letter)
|
155 |
c.setFont('Helvetica', 12)
|
156 |
c.drawString(100, 750, 'Subcontractor Performance Report')
|
@@ -160,7 +203,6 @@ def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict):
|
|
160 |
c.drawString(100, 670, f'Timeliness Score: {scores["timelinessScore"]}% ({get_feedback(scores["timelinessScore"], "Timeliness")})')
|
161 |
c.drawString(100, 650, f'Safety Score: {scores["safetyScore"]}% ({get_feedback(scores["safetyScore"], "Safety")})')
|
162 |
c.drawString(100, 630, f'Communication Score: {scores["communicationScore"]}% ({get_feedback(scores["communicationScore"], "Communication")})')
|
163 |
-
# Removed Final Score from PDF since it's a Formula field
|
164 |
c.save()
|
165 |
|
166 |
with open(filename, 'rb') as f:
|
@@ -169,26 +211,23 @@ def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict):
|
|
169 |
return pdf_content
|
170 |
except Exception as e:
|
171 |
logger.error(f"Error generating PDF: {str(e)}")
|
172 |
-
raise
|
173 |
|
174 |
def determine_alert_flag(scores: dict, all_logs: list):
|
175 |
try:
|
176 |
if not all_logs:
|
177 |
return False
|
178 |
-
|
179 |
-
# For now, we'll base the alert on the average of other scores
|
180 |
-
avg_score = (scores['qualityScore'] + scores['timelinessScore'] + scores['safetyScore'] + scores['communicationScore']) / 4
|
181 |
if avg_score < 50:
|
182 |
return True
|
183 |
-
lowest_avg = min([(log['scores']
|
184 |
return avg_score == lowest_avg
|
185 |
except Exception as e:
|
186 |
logger.error(f"Error determining alert flag: {str(e)}")
|
187 |
-
|
188 |
|
189 |
def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes, alert_flag: bool):
|
190 |
try:
|
191 |
-
# Step 1: Create the Subcontractor_Performance_Score__c record without Final_Score__c
|
192 |
score_record = sf.Subcontractor_Performance_Score__c.create({
|
193 |
'Vendor_Log__c': log.vendorLogId,
|
194 |
'Vendor__c': log.vendorRecordId,
|
@@ -197,12 +236,10 @@ def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes,
|
|
197 |
'Safety_Score__c': scores['safetyScore'],
|
198 |
'Communication_Score__c': scores['communicationScore'],
|
199 |
'Alert_Flag__c': alert_flag
|
200 |
-
# Removed Final_Score__c since it's a Formula field
|
201 |
})
|
202 |
score_record_id = score_record['id']
|
203 |
logger.info(f"Successfully created Subcontractor_Performance_Score__c record with ID: {score_record_id}")
|
204 |
|
205 |
-
# Step 2: Upload the PDF as a ContentVersion
|
206 |
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
|
207 |
content_version = sf.ContentVersion.create({
|
208 |
'Title': f'Performance_Report_{log.vendorId}',
|
@@ -210,25 +247,19 @@ def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes,
|
|
210 |
'VersionData': pdf_base64,
|
211 |
'FirstPublishLocationId': score_record_id
|
212 |
})
|
213 |
-
logger.info(f"Successfully uploaded PDF as ContentVersion for Vendor Log ID: {log.vendorLogId}")
|
214 |
-
|
215 |
-
# Step 3: Get the ContentDocumentId and construct a URL to the file
|
216 |
content_version_id = content_version['id']
|
217 |
content_version_record = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
|
|
|
|
|
|
|
218 |
content_document_id = content_version_record['records'][0]['ContentDocumentId']
|
219 |
|
220 |
-
# Construct the URL to the file
|
221 |
pdf_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_document_id}"
|
222 |
-
|
223 |
-
# Step 4: Update the Subcontractor_Performance_Score__c record with the PDF URL
|
224 |
-
sf.Subcontractor_Performance_Score__c.update(score_record_id, {
|
225 |
-
'PDF_Link__c': pdf_url
|
226 |
-
})
|
227 |
logger.info(f"Successfully updated Subcontractor_Performance_Score__c record with PDF URL: {pdf_url}")
|
228 |
-
|
229 |
except Exception as e:
|
230 |
logger.error(f"Error storing scores in Salesforce: {str(e)}")
|
231 |
-
raise
|
232 |
|
233 |
@app.post('/score')
|
234 |
async def score_vendor(log: VendorLog, authorization: str = Header(...)):
|
@@ -269,6 +300,8 @@ async def score_vendor(log: VendorLog, authorization: str = Header(...)):
|
|
269 |
'pdfContent': pdf_base64,
|
270 |
'alert': alert_flag
|
271 |
}
|
|
|
|
|
272 |
except Exception as e:
|
273 |
logger.error(f"Error in /score endpoint: {str(e)}")
|
274 |
raise HTTPException(status_code=500, detail=f"Error processing vendor log: {str(e)}")
|
@@ -325,11 +358,15 @@ async def get_dashboard():
|
|
325 |
</style>
|
326 |
<script>
|
327 |
async function generateScores() {
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
333 |
}
|
334 |
}
|
335 |
</script>
|
@@ -449,11 +486,24 @@ async def generate_scores():
|
|
449 |
'scores': scores,
|
450 |
'extracted': True
|
451 |
})
|
|
|
452 |
return {"status": "success"}
|
453 |
except Exception as e:
|
454 |
logger.error(f"Error in /generate endpoint: {str(e)}")
|
455 |
raise HTTPException(status_code=500, detail=f"Error generating scores: {str(e)}")
|
456 |
|
457 |
-
|
458 |
-
|
459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from datetime import datetime
|
9 |
from fastapi.responses import HTMLResponse
|
10 |
from simple_salesforce import Salesforce
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
from datasets import load_dataset # For Hugging Face
|
13 |
|
14 |
+
# Load environment variables
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Set up logging
|
18 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
app = FastAPI()
|
22 |
|
23 |
+
# Environment variables
|
24 |
+
SF_USERNAME = os.getenv("SF_USERNAME")
|
25 |
+
SF_PASSWORD = os.getenv("SF_PASSWORD")
|
26 |
+
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
|
27 |
SF_DOMAIN = os.getenv("SF_DOMAIN", "login")
|
|
|
|
|
28 |
API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
|
|
|
|
|
|
29 |
|
30 |
+
# Validate environment variables
|
31 |
+
required_env_vars = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN", "HUGGINGFACE_API_KEY"]
|
32 |
+
for var in required_env_vars:
|
33 |
+
if not os.getenv(var):
|
34 |
+
logger.error(f"Environment variable {var} is not set")
|
35 |
+
raise ValueError(f"Environment variable {var} is not set")
|
36 |
+
|
37 |
+
# Salesforce connection
|
38 |
+
sf = None
|
39 |
try:
|
40 |
sf = Salesforce(
|
41 |
username=SF_USERNAME,
|
|
|
46 |
logger.info("Successfully connected to Salesforce")
|
47 |
except Exception as e:
|
48 |
logger.error(f"Failed to connect to Salesforce: {str(e)}")
|
49 |
+
raise RuntimeError(f"Cannot connect to Salesforce: {str(e)}")
|
50 |
|
51 |
+
# VendorLog model
|
52 |
class VendorLog(BaseModel):
|
53 |
vendorLogId: str
|
54 |
vendorId: str
|
|
|
62 |
delayDays: int
|
63 |
project: str
|
64 |
|
65 |
+
# Store vendor logs
|
66 |
vendor_logs = []
|
67 |
|
68 |
+
def validate_salesforce_fields():
|
69 |
+
"""Validate required Salesforce fields"""
|
70 |
+
try:
|
71 |
+
vendor_log_fields = [f['name'] for f in sf.Vendor_Log__c.describe()['fields']]
|
72 |
+
required_vendor_fields = [
|
73 |
+
'Vendor__c', 'Work_Completion_Percentage__c', 'Quality_Percentage__c',
|
74 |
+
'Incident_Severity__c', 'Work_Completion_Date__c', 'Actual_Completion_Date__c',
|
75 |
+
'Delay_Days__c', 'Project__c'
|
76 |
+
]
|
77 |
+
for field in required_vendor_fields:
|
78 |
+
if field not in vendor_log_fields:
|
79 |
+
logger.error(f"Field {field} not found in Vendor_Log__c")
|
80 |
+
raise ValueError(f"Field {field} not found in Vendor_Log__c")
|
81 |
+
|
82 |
+
score_fields = [f['name'] for f in sf.Subcontractor_Performance_Score__c.describe()['fields']]
|
83 |
+
required_score_fields = [
|
84 |
+
'Vendor_Log__c', 'Vendor__c', 'Quality_Score__c', 'Timeliness_Score__c',
|
85 |
+
'Safety_Score__c', 'Communication_Score__c', 'Alert_Flag__c', 'PDF_Link__c'
|
86 |
+
]
|
87 |
+
for field in required_score_fields:
|
88 |
+
if field not in score_fields:
|
89 |
+
logger.error(f"Field {field} not found in Subcontractor_Performance_Score__c")
|
90 |
+
raise ValueError(f"Field {field} not found in Subcontractor_Performance_Score__c")
|
91 |
+
logger.info("Salesforce fields validated successfully")
|
92 |
+
except Exception as e:
|
93 |
+
logger.error(f"Error validating Salesforce fields: {str(e)}")
|
94 |
+
raise
|
95 |
+
|
96 |
+
# Validate fields on startup
|
97 |
+
validate_salesforce_fields()
|
98 |
+
|
99 |
+
def fetch_huggingface_records(dataset_name: str = "imdb"):
|
100 |
+
"""Fetch records from a Hugging Face dataset."""
|
101 |
+
try:
|
102 |
+
os.environ["HUGGINGFACE_TOKEN"] = API_KEY
|
103 |
+
dataset = load_dataset(dataset_name)
|
104 |
+
logger.info(f"Successfully fetched dataset: {dataset_name}")
|
105 |
+
records = [record for record in dataset['train']] # Assuming 'train' split
|
106 |
+
return records[:10] # Limit to 10 records for demonstration
|
107 |
+
except Exception as e:
|
108 |
+
logger.error(f"Error fetching Hugging Face dataset {dataset_name}: {str(e)}")
|
109 |
+
return []
|
110 |
+
|
111 |
def fetch_vendor_logs_from_salesforce():
|
112 |
try:
|
113 |
query = """
|
114 |
+
SELECT Id, Name, Vendor__c, Work_Completion_Percentage__c, Quality_Percentage__c,
|
115 |
+
Incident_Severity__c, Work_Completion_Date__c, Actual_Completion_Date__c,
|
116 |
+
Delay_Days__c, Project__c
|
117 |
FROM Vendor_Log__c
|
118 |
"""
|
119 |
result = sf.query_all(query)
|
|
|
123 |
logger.warning(f"Skipping Vendor_Log__c record with ID {record['Id']} due to missing Vendor__c")
|
124 |
continue
|
125 |
log = VendorLog(
|
126 |
+
vendorLogId=record.get('Id', 'Unknown'),
|
127 |
+
vendorId=record.get('Name', 'Unknown'),
|
128 |
+
vendorRecordId=record.get('Vendor__c', 'Unknown'),
|
129 |
+
workDetails=str(record.get('Work_Completion_Percentage__c', 0.0)),
|
130 |
+
qualityReport=str(record.get('Quality_Percentage__c', 0.0)),
|
131 |
+
incidentLog=record.get('Incident_Severity__c', 'None'),
|
132 |
+
workCompletionDate=record.get('Work_Completion_Date__c', 'N/A'),
|
133 |
+
actualCompletionDate=record.get('Actual_Completion_Date__c', 'N/A'),
|
134 |
+
vendorLogName=record.get('Name', 'Unknown'),
|
135 |
+
delayDays=int(record.get('Delay_Days__c', 0)),
|
136 |
+
project=record.get('Project__c', 'Unknown')
|
137 |
)
|
138 |
logs.append(log)
|
139 |
+
logger.info(f"Fetched {len(logs)} vendor logs")
|
140 |
return logs
|
141 |
except Exception as e:
|
142 |
logger.error(f"Error fetching vendor logs from Salesforce: {str(e)}")
|
143 |
+
raise HTTPException(status_code=500, detail=f"Error fetching vendor logs: {str(e)}")
|
144 |
|
145 |
def calculate_scores(log: VendorLog):
|
146 |
try:
|
147 |
+
work_completion_percentage = float(log.workDetails or 0.0)
|
148 |
+
quality_percentage = float(log.qualityReport or 0.0)
|
149 |
|
|
|
150 |
quality_score = quality_percentage
|
|
|
|
|
151 |
timeliness_score = 100.0 if log.delayDays <= 0 else 80.0 if log.delayDays <= 3 else 60.0 if log.delayDays <= 7 else 40.0
|
|
|
|
|
152 |
severity_map = {'None': 100.0, 'Low': 80.0, 'Minor': 80.0, 'Medium': 50.0, 'High': 20.0}
|
153 |
safety_score = severity_map.get(log.incidentLog, 100.0)
|
|
|
|
|
154 |
communication_score = (quality_score * 0.33 + timeliness_score * 0.33 + safety_score * 0.33)
|
155 |
|
|
|
156 |
return {
|
157 |
'qualityScore': round(quality_score, 2),
|
158 |
'timelinessScore': round(timeliness_score, 2),
|
|
|
161 |
}
|
162 |
except Exception as e:
|
163 |
logger.error(f"Error calculating scores: {str(e)}")
|
164 |
+
raise HTTPException(status_code=500, detail=f"Error calculating scores: {str(e)}")
|
165 |
|
166 |
def get_feedback(score: float, metric: str) -> str:
|
167 |
try:
|
|
|
189 |
return "Poor: Communication issues detected"
|
190 |
except Exception as e:
|
191 |
logger.error(f"Error generating feedback: {str(e)}")
|
192 |
+
return "Feedback unavailable"
|
193 |
|
194 |
def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict):
|
195 |
try:
|
196 |
+
filename = f'report_{vendor_id}_{datetime.now().strftime("%Y%m%d%H%M%S")}.pdf'
|
197 |
c = canvas.Canvas(filename, pagesize=letter)
|
198 |
c.setFont('Helvetica', 12)
|
199 |
c.drawString(100, 750, 'Subcontractor Performance Report')
|
|
|
203 |
c.drawString(100, 670, f'Timeliness Score: {scores["timelinessScore"]}% ({get_feedback(scores["timelinessScore"], "Timeliness")})')
|
204 |
c.drawString(100, 650, f'Safety Score: {scores["safetyScore"]}% ({get_feedback(scores["safetyScore"], "Safety")})')
|
205 |
c.drawString(100, 630, f'Communication Score: {scores["communicationScore"]}% ({get_feedback(scores["communicationScore"], "Communication")})')
|
|
|
206 |
c.save()
|
207 |
|
208 |
with open(filename, 'rb') as f:
|
|
|
211 |
return pdf_content
|
212 |
except Exception as e:
|
213 |
logger.error(f"Error generating PDF: {str(e)}")
|
214 |
+
raise HTTPException(status_code=500, detail=f"Error generating PDF: {str(e)}")
|
215 |
|
216 |
def determine_alert_flag(scores: dict, all_logs: list):
|
217 |
try:
|
218 |
if not all_logs:
|
219 |
return False
|
220 |
+
avg_score = sum(scores.values()) / 4
|
|
|
|
|
221 |
if avg_score < 50:
|
222 |
return True
|
223 |
+
lowest_avg = min([sum(log['scores'].values()) / 4 for log in all_logs], default=avg_score)
|
224 |
return avg_score == lowest_avg
|
225 |
except Exception as e:
|
226 |
logger.error(f"Error determining alert flag: {str(e)}")
|
227 |
+
return False
|
228 |
|
229 |
def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes, alert_flag: bool):
|
230 |
try:
|
|
|
231 |
score_record = sf.Subcontractor_Performance_Score__c.create({
|
232 |
'Vendor_Log__c': log.vendorLogId,
|
233 |
'Vendor__c': log.vendorRecordId,
|
|
|
236 |
'Safety_Score__c': scores['safetyScore'],
|
237 |
'Communication_Score__c': scores['communicationScore'],
|
238 |
'Alert_Flag__c': alert_flag
|
|
|
239 |
})
|
240 |
score_record_id = score_record['id']
|
241 |
logger.info(f"Successfully created Subcontractor_Performance_Score__c record with ID: {score_record_id}")
|
242 |
|
|
|
243 |
pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
|
244 |
content_version = sf.ContentVersion.create({
|
245 |
'Title': f'Performance_Report_{log.vendorId}',
|
|
|
247 |
'VersionData': pdf_base64,
|
248 |
'FirstPublishLocationId': score_record_id
|
249 |
})
|
|
|
|
|
|
|
250 |
content_version_id = content_version['id']
|
251 |
content_version_record = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
|
252 |
+
if content_version_record['totalSize'] == 0:
|
253 |
+
logger.error(f"No ContentVersion for ID: {content_version_id}")
|
254 |
+
raise ValueError("Failed to retrieve ContentDocumentId")
|
255 |
content_document_id = content_version_record['records'][0]['ContentDocumentId']
|
256 |
|
|
|
257 |
pdf_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_document_id}"
|
258 |
+
sf.Subcontractor_Performance_Score__c.update(score_record_id, {'PDF_Link__c': pdf_url})
|
|
|
|
|
|
|
|
|
259 |
logger.info(f"Successfully updated Subcontractor_Performance_Score__c record with PDF URL: {pdf_url}")
|
|
|
260 |
except Exception as e:
|
261 |
logger.error(f"Error storing scores in Salesforce: {str(e)}")
|
262 |
+
raise HTTPException(status_code=500, detail=f"Error storing scores: {str(e)}")
|
263 |
|
264 |
@app.post('/score')
|
265 |
async def score_vendor(log: VendorLog, authorization: str = Header(...)):
|
|
|
300 |
'pdfContent': pdf_base64,
|
301 |
'alert': alert_flag
|
302 |
}
|
303 |
+
except HTTPException as e:
|
304 |
+
raise
|
305 |
except Exception as e:
|
306 |
logger.error(f"Error in /score endpoint: {str(e)}")
|
307 |
raise HTTPException(status_code=500, detail=f"Error processing vendor log: {str(e)}")
|
|
|
358 |
</style>
|
359 |
<script>
|
360 |
async function generateScores() {
|
361 |
+
try {
|
362 |
+
const response = await fetch('/generate', { method: 'POST' });
|
363 |
+
if (response.ok) {
|
364 |
+
window.location.reload();
|
365 |
+
} else {
|
366 |
+
alert('Error generating scores');
|
367 |
+
}
|
368 |
+
} catch (error) {
|
369 |
+
alert('Error: ' + error.message);
|
370 |
}
|
371 |
}
|
372 |
</script>
|
|
|
486 |
'scores': scores,
|
487 |
'extracted': True
|
488 |
})
|
489 |
+
logger.info(f"Generated scores for {len(vendor_logs)} logs")
|
490 |
return {"status": "success"}
|
491 |
except Exception as e:
|
492 |
logger.error(f"Error in /generate endpoint: {str(e)}")
|
493 |
raise HTTPException(status_code=500, detail=f"Error generating scores: {str(e)}")
|
494 |
|
495 |
+
@app.get('/huggingface-records')
|
496 |
+
async def get_huggingface_records():
|
497 |
+
"""Fetch and return Hugging Face dataset records."""
|
498 |
+
try:
|
499 |
+
records = fetch_huggingface_records()
|
500 |
+
if not records:
|
501 |
+
raise HTTPException(status_code=404, detail="No records fetched from Hugging Face")
|
502 |
+
return {"records": records}
|
503 |
+
except Exception as e:
|
504 |
+
logger.error(f"Error fetching Hugging Face records: {str(e)}")
|
505 |
+
raise HTTPException(status_code=500, detail=f"Failed to fetch Hugging Face records: {str(e)}")
|
506 |
+
|
507 |
+
@app.get('/debug')
|
508 |
+
async def debug_info():
|
509 |
+
"""Return
|