File size: 13,429 Bytes
63deadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
"""Configuration for run evaluators."""

from typing import Any, Callable, Dict, List, Optional, Sequence, Union

from langchain_core.embeddings import Embeddings
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langsmith import RunEvaluator
from langsmith.evaluation.evaluator import EvaluationResult, EvaluationResults
from langsmith.schemas import Example, Run

from langchain.evaluation.criteria.eval_chain import CRITERIA_TYPE
from langchain.evaluation.embedding_distance.base import (
    EmbeddingDistance as EmbeddingDistanceEnum,
)
from langchain.evaluation.schema import EvaluatorType, StringEvaluator
from langchain.evaluation.string_distance.base import (
    StringDistance as StringDistanceEnum,
)

RUN_EVALUATOR_LIKE = Callable[
    [Run, Optional[Example]], Union[EvaluationResult, EvaluationResults, dict]
]
BATCH_EVALUATOR_LIKE = Callable[
    [Sequence[Run], Optional[Sequence[Example]]],
    Union[EvaluationResult, EvaluationResults, dict],
]


class EvalConfig(BaseModel):
    """Configuration for a given run evaluator.

    Parameters
    ----------
    evaluator_type : EvaluatorType
        The type of evaluator to use.

    Methods
    -------
    get_kwargs()
        Get the keyword arguments for the evaluator configuration.

    """

    evaluator_type: EvaluatorType

    def get_kwargs(self) -> Dict[str, Any]:
        """Get the keyword arguments for the load_evaluator call.

        Returns
        -------
        Dict[str, Any]
            The keyword arguments for the load_evaluator call.

        """
        kwargs = {}
        for field, val in self:
            if field == "evaluator_type":
                continue
            elif val is None:
                continue
            kwargs[field] = val
        return kwargs


class SingleKeyEvalConfig(EvalConfig):
    """Configuration for a run evaluator that only requires a single key."""

    reference_key: Optional[str] = None
    """The key in the dataset run to use as the reference string.
    If not provided, we will attempt to infer automatically."""
    prediction_key: Optional[str] = None
    """The key from the traced run's outputs dictionary to use to
    represent the prediction. If not provided, it will be inferred
    automatically."""
    input_key: Optional[str] = None
    """The key from the traced run's inputs dictionary to use to represent the
    input. If not provided, it will be inferred automatically."""

    def get_kwargs(self) -> Dict[str, Any]:
        kwargs = super().get_kwargs()
        # Filer out the keys that are not needed for the evaluator.
        for key in ["reference_key", "prediction_key", "input_key"]:
            kwargs.pop(key, None)
        return kwargs


CUSTOM_EVALUATOR_TYPE = Union[RUN_EVALUATOR_LIKE, RunEvaluator, StringEvaluator]
SINGLE_EVAL_CONFIG_TYPE = Union[EvaluatorType, str, EvalConfig]


class RunEvalConfig(BaseModel):
    """Configuration for a run evaluation.

    Parameters
    ----------
    evaluators : List[Union[EvaluatorType, EvalConfig, RunEvaluator, Callable]]
        Configurations for which evaluators to apply to the dataset run.
        Each can be the string of an :class:`EvaluatorType <langchain.evaluation.schema.EvaluatorType>`, such
        as EvaluatorType.QA, the evaluator type string ("qa"), or a configuration for a
        given evaluator (e.g., :class:`RunEvalConfig.QA <langchain.smith.evaluation.config.RunEvalConfig.QA>`).

    custom_evaluators : Optional[List[Union[RunEvaluator, StringEvaluator]]]
        Custom evaluators to apply to the dataset run.

    reference_key : Optional[str]
        The key in the dataset run to use as the reference string.
        If not provided, it will be inferred automatically.

    prediction_key : Optional[str]
        The key from the traced run's outputs dictionary to use to
        represent the prediction. If not provided, it will be inferred
        automatically.

    input_key : Optional[str]
        The key from the traced run's inputs dictionary to use to represent the
        input. If not provided, it will be inferred automatically.

    eval_llm : Optional[BaseLanguageModel]
        The language model to pass to any evaluators that use a language model.
    """  # noqa: E501

    evaluators: List[
        Union[
            SINGLE_EVAL_CONFIG_TYPE,
            CUSTOM_EVALUATOR_TYPE,
        ]
    ] = Field(default_factory=list)
    """Configurations for which evaluators to apply to the dataset run.
    Each can be the string of an
    :class:`EvaluatorType <langchain.evaluation.schema.EvaluatorType>`, such
    as `EvaluatorType.QA`, the evaluator type string ("qa"), or a configuration for a
    given evaluator
    (e.g., 
    :class:`RunEvalConfig.QA <langchain.smith.evaluation.config.RunEvalConfig.QA>`)."""  # noqa: E501
    custom_evaluators: Optional[List[CUSTOM_EVALUATOR_TYPE]] = None
    """Custom evaluators to apply to the dataset run."""
    batch_evaluators: Optional[List[BATCH_EVALUATOR_LIKE]] = None
    """Evaluators that run on an aggregate/batch level.

    These generate 1 or more metrics that are assigned to the full test run.
    As a result, they are not associated with individual traces.
    """

    reference_key: Optional[str] = None
    """The key in the dataset run to use as the reference string.
    If not provided, we will attempt to infer automatically."""
    prediction_key: Optional[str] = None
    """The key from the traced run's outputs dictionary to use to
    represent the prediction. If not provided, it will be inferred
    automatically."""
    input_key: Optional[str] = None
    """The key from the traced run's inputs dictionary to use to represent the
    input. If not provided, it will be inferred automatically."""
    eval_llm: Optional[BaseLanguageModel] = None
    """The language model to pass to any evaluators that require one."""

    class Config:
        arbitrary_types_allowed = True

    class Criteria(SingleKeyEvalConfig):
        """Configuration for a reference-free criteria evaluator.

        Parameters
        ----------
        criteria : Optional[CRITERIA_TYPE]
            The criteria to evaluate.
        llm : Optional[BaseLanguageModel]
            The language model to use for the evaluation chain.

        """

        criteria: Optional[CRITERIA_TYPE] = None
        llm: Optional[BaseLanguageModel] = None
        evaluator_type: EvaluatorType = EvaluatorType.CRITERIA

        def __init__(
            self, criteria: Optional[CRITERIA_TYPE] = None, **kwargs: Any
        ) -> None:
            super().__init__(criteria=criteria, **kwargs)  # type: ignore[call-arg]

    class LabeledCriteria(SingleKeyEvalConfig):
        """Configuration for a labeled (with references) criteria evaluator.

        Parameters
        ----------
        criteria : Optional[CRITERIA_TYPE]
            The criteria to evaluate.
        llm : Optional[BaseLanguageModel]
            The language model to use for the evaluation chain.
        """

        criteria: Optional[CRITERIA_TYPE] = None
        llm: Optional[BaseLanguageModel] = None
        evaluator_type: EvaluatorType = EvaluatorType.LABELED_CRITERIA

        def __init__(
            self, criteria: Optional[CRITERIA_TYPE] = None, **kwargs: Any
        ) -> None:
            super().__init__(criteria=criteria, **kwargs)  # type: ignore[call-arg]

    class EmbeddingDistance(SingleKeyEvalConfig):
        """Configuration for an embedding distance evaluator.

        Parameters
        ----------
        embeddings : Optional[Embeddings]
            The embeddings to use for computing the distance.

        distance_metric : Optional[EmbeddingDistanceEnum]
            The distance metric to use for computing the distance.

        """

        evaluator_type: EvaluatorType = EvaluatorType.EMBEDDING_DISTANCE
        embeddings: Optional[Embeddings] = None
        distance_metric: Optional[EmbeddingDistanceEnum] = None

        class Config:
            arbitrary_types_allowed = True

    class StringDistance(SingleKeyEvalConfig):
        """Configuration for a string distance evaluator.

        Parameters
        ----------
        distance : Optional[StringDistanceEnum]
            The string distance metric to use.

        """

        evaluator_type: EvaluatorType = EvaluatorType.STRING_DISTANCE
        distance: Optional[StringDistanceEnum] = None
        """The string distance metric to use.
            damerau_levenshtein: The Damerau-Levenshtein distance.
            levenshtein: The Levenshtein distance.
            jaro: The Jaro distance.
            jaro_winkler: The Jaro-Winkler distance.
        """
        normalize_score: bool = True
        """Whether to normalize the distance to between 0 and 1.
        Applies only to the Levenshtein and Damerau-Levenshtein distances."""

    class QA(SingleKeyEvalConfig):
        """Configuration for a QA evaluator.

        Parameters
        ----------
        prompt : Optional[BasePromptTemplate]
            The prompt template to use for generating the question.
        llm : Optional[BaseLanguageModel]
            The language model to use for the evaluation chain.
        """

        evaluator_type: EvaluatorType = EvaluatorType.QA
        llm: Optional[BaseLanguageModel] = None
        prompt: Optional[BasePromptTemplate] = None

    class ContextQA(SingleKeyEvalConfig):
        """Configuration for a context-based QA evaluator.

        Parameters
        ----------
        prompt : Optional[BasePromptTemplate]
            The prompt template to use for generating the question.
        llm : Optional[BaseLanguageModel]
            The language model to use for the evaluation chain.

        """

        evaluator_type: EvaluatorType = EvaluatorType.CONTEXT_QA
        llm: Optional[BaseLanguageModel] = None
        prompt: Optional[BasePromptTemplate] = None

    class CoTQA(SingleKeyEvalConfig):
        """Configuration for a context-based QA evaluator.

        Parameters
        ----------
        prompt : Optional[BasePromptTemplate]
            The prompt template to use for generating the question.
        llm : Optional[BaseLanguageModel]
            The language model to use for the evaluation chain.

        """

        evaluator_type: EvaluatorType = EvaluatorType.CONTEXT_QA
        llm: Optional[BaseLanguageModel] = None
        prompt: Optional[BasePromptTemplate] = None

    class JsonValidity(SingleKeyEvalConfig):
        """Configuration for a json validity evaluator.

        Parameters
        ----------
        """

        evaluator_type: EvaluatorType = EvaluatorType.JSON_VALIDITY

    class JsonEqualityEvaluator(EvalConfig):
        """Configuration for a json equality evaluator.

        Parameters
        ----------
        """

        evaluator_type: EvaluatorType = EvaluatorType.JSON_EQUALITY

    class ExactMatch(SingleKeyEvalConfig):
        """Configuration for an exact match string evaluator.

        Parameters
        ----------
        ignore_case : bool
            Whether to ignore case when comparing strings.
        ignore_punctuation : bool
            Whether to ignore punctuation when comparing strings.
        ignore_numbers : bool
            Whether to ignore numbers when comparing strings.
        """

        evaluator_type: EvaluatorType = EvaluatorType.EXACT_MATCH
        ignore_case: bool = False
        ignore_punctuation: bool = False
        ignore_numbers: bool = False

    class RegexMatch(SingleKeyEvalConfig):
        """Configuration for a regex match string evaluator.

        Parameters
        ----------
        flags : int
            The flags to pass to the regex. Example: re.IGNORECASE.
        """

        evaluator_type: EvaluatorType = EvaluatorType.REGEX_MATCH
        flags: int = 0

    class ScoreString(SingleKeyEvalConfig):
        """Configuration for a score string evaluator.
        This is like the criteria evaluator but it is configured by
        default to return a score on the scale from 1-10.

        It is recommended to normalize these scores
        by setting `normalize_by` to 10.

        Parameters
        ----------
        criteria : Optional[CRITERIA_TYPE]
            The criteria to evaluate.
        llm : Optional[BaseLanguageModel]
            The language model to use for the evaluation chain.
        normalize_by: Optional[int] = None
            If you want to normalize the score, the denominator to use.
            If not provided, the score will be between 1 and 10 (by default).
        prompt : Optional[BasePromptTemplate]

        """

        evaluator_type: EvaluatorType = EvaluatorType.SCORE_STRING
        criteria: Optional[CRITERIA_TYPE] = None
        llm: Optional[BaseLanguageModel] = None
        normalize_by: Optional[float] = None
        prompt: Optional[BasePromptTemplate] = None

        def __init__(
            self,
            criteria: Optional[CRITERIA_TYPE] = None,
            normalize_by: Optional[float] = None,
            **kwargs: Any,
        ) -> None:
            super().__init__(criteria=criteria, normalize_by=normalize_by, **kwargs)  # type: ignore[call-arg]

    class LabeledScoreString(ScoreString):
        evaluator_type: EvaluatorType = EvaluatorType.LABELED_SCORE_STRING