Spaces:
Runtime error
Runtime error
File size: 54,230 Bytes
63deadc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 |
"""Utilities for running language models or Chains over datasets."""
from __future__ import annotations
import concurrent.futures
import dataclasses
import functools
import inspect
import logging
import uuid
from datetime import datetime, timezone
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
List,
Optional,
Tuple,
Union,
cast,
)
from langchain_core._api import warn_deprecated
from langchain_core.callbacks.manager import Callbacks
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import BaseMessage, messages_from_dict
from langchain_core.outputs import ChatResult, LLMResult
from langchain_core.runnables import Runnable, RunnableConfig, RunnableLambda
from langchain_core.runnables import config as runnable_config
from langchain_core.runnables import utils as runnable_utils
from langchain_core.tracers.evaluation import (
EvaluatorCallbackHandler,
wait_for_all_evaluators,
)
from langchain_core.tracers.langchain import LangChainTracer
from langsmith.client import Client
from langsmith.env import get_git_info, get_langchain_env_var_metadata
from langsmith.evaluation import (
EvaluationResult,
RunEvaluator,
)
from langsmith.evaluation import (
run_evaluator as run_evaluator_dec,
)
from langsmith.run_helpers import as_runnable, is_traceable_function
from langsmith.schemas import Dataset, DataType, Example, Run, TracerSession
from langsmith.utils import LangSmithError
from requests import HTTPError
from typing_extensions import TypedDict
from langchain.chains.base import Chain
from langchain.evaluation.loading import load_evaluator
from langchain.evaluation.schema import (
EvaluatorType,
PairwiseStringEvaluator,
StringEvaluator,
)
from langchain.smith import evaluation as smith_eval
from langchain.smith.evaluation import config as smith_eval_config
from langchain.smith.evaluation import name_generation, progress
if TYPE_CHECKING:
import pandas as pd
logger = logging.getLogger(__name__)
MODEL_OR_CHAIN_FACTORY = Union[
Callable[[], Union[Chain, Runnable]],
BaseLanguageModel,
Callable[[dict], Any],
Runnable,
Chain,
]
MCF = Union[Callable[[], Union[Chain, Runnable]], BaseLanguageModel]
class InputFormatError(Exception):
"""Raised when the input format is invalid."""
## Shared Utilities
class TestResult(dict):
"""A dictionary of the results of a single test run."""
def get_aggregate_feedback(
self,
) -> pd.DataFrame:
"""Return quantiles for the feedback scores.
This method calculates and prints the quantiles for the feedback scores
across all feedback keys.
Returns:
A DataFrame containing the quantiles for each feedback key.
"""
df = self.to_dataframe()
# Drop all things starting with inputs., outputs., and reference
to_drop = [
col
for col in df.columns
if col.startswith("inputs.")
or col.startswith("outputs.")
or col in {"input", "output"}
or col.startswith("reference")
]
return df.describe(include="all").drop(to_drop, axis=1)
def to_dataframe(self) -> pd.DataFrame:
"""Convert the results to a dataframe."""
try:
import pandas as pd
except ImportError as e:
raise ImportError(
"Pandas is required to convert the results to a dataframe."
" to install pandas, run `pip install pandas`."
) from e
indices = []
records = []
for example_id, result in self["results"].items():
feedback = result["feedback"]
output_ = result.get("output")
if isinstance(output_, dict):
output = {f"outputs.{k}": v for k, v in output_.items()}
elif output_ is None:
output = {}
else:
output = {"output": output_}
r = {
**{f"inputs.{k}": v for k, v in result["input"].items()},
**output,
}
if "reference" in result:
if isinstance(result["reference"], dict):
r.update(
{f"reference.{k}": v for k, v in result["reference"].items()}
)
else:
r["reference"] = result["reference"]
r.update(
{
**{f"feedback.{f.key}": f.score for f in feedback},
"error": result.get("Error"),
"execution_time": result["execution_time"],
"run_id": result.get("run_id"),
}
)
records.append(r)
indices.append(example_id)
return pd.DataFrame(records, index=indices)
class EvalError(dict):
"""Your architecture raised an error."""
def __init__(self, Error: BaseException, **kwargs: Any) -> None:
super().__init__(Error=Error, **kwargs)
def __getattr__(self, name: str) -> Any:
try:
return self[name]
except KeyError:
raise AttributeError(f"'EvalError' object has no attribute '{name}'")
def _wrap_in_chain_factory(
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
dataset_name: str = "<my_dataset>",
) -> MCF:
"""Forgive the user if they pass in a chain without memory instead of a chain
factory. It's a common mistake. Raise a more helpful error message as well."""
if isinstance(llm_or_chain_factory, Chain):
chain = llm_or_chain_factory
chain_class = chain.__class__.__name__
if llm_or_chain_factory.memory is not None:
memory_class = chain.memory.__class__.__name__
raise ValueError(
"Cannot directly evaluate a chain with stateful memory."
" To evaluate this chain, pass in a chain constructor"
" that initializes fresh memory each time it is called."
" This will safegaurd against information"
" leakage between dataset examples."
"\nFor example:\n\n"
"def chain_constructor():\n"
f" new_memory = {memory_class}(...)\n"
f" return {chain_class}"
"(memory=new_memory, ...)\n\n"
f'run_on_dataset("{dataset_name}", chain_constructor, ...)'
)
return lambda: chain
elif isinstance(llm_or_chain_factory, BaseLanguageModel):
return llm_or_chain_factory
elif isinstance(llm_or_chain_factory, Runnable):
# Memory may exist here, but it's not elegant to check all those cases.
lcf = llm_or_chain_factory
return lambda: lcf
elif callable(llm_or_chain_factory):
if is_traceable_function(llm_or_chain_factory):
runnable_ = as_runnable(cast(Callable, llm_or_chain_factory))
return lambda: runnable_
try:
_model = llm_or_chain_factory() # type: ignore[call-arg]
except TypeError:
# It's an arbitrary function, wrap it in a RunnableLambda
user_func = cast(Callable, llm_or_chain_factory)
sig = inspect.signature(user_func)
logger.info(f"Wrapping function {sig} as RunnableLambda.")
wrapped = RunnableLambda(user_func)
return lambda: wrapped
constructor = cast(Callable, llm_or_chain_factory)
if isinstance(_model, BaseLanguageModel):
# It's not uncommon to do an LLM constructor instead of raw LLM,
# so we'll unpack it for the user.
return _model
elif is_traceable_function(cast(Callable, _model)):
runnable_ = as_runnable(cast(Callable, _model))
return lambda: runnable_
elif not isinstance(_model, Runnable):
# This is unlikely to happen - a constructor for a model function
return lambda: RunnableLambda(constructor)
else:
# Typical correct case
return constructor # noqa
return llm_or_chain_factory
def _get_prompt(inputs: Dict[str, Any]) -> str:
"""Get prompt from inputs.
Args:
inputs: The input dictionary.
Returns:
A string prompt.
Raises:
InputFormatError: If the input format is invalid.
"""
if not inputs:
raise InputFormatError("Inputs should not be empty.")
prompts = []
if "prompt" in inputs:
if not isinstance(inputs["prompt"], str):
raise InputFormatError(
"Expected string for 'prompt', got"
f" {type(inputs['prompt']).__name__}"
)
prompts = [inputs["prompt"]]
elif "prompts" in inputs:
if not isinstance(inputs["prompts"], list) or not all(
isinstance(i, str) for i in inputs["prompts"]
):
raise InputFormatError(
"Expected list of strings for 'prompts',"
f" got {type(inputs['prompts']).__name__}"
)
prompts = inputs["prompts"]
elif len(inputs) == 1:
prompt_ = next(iter(inputs.values()))
if isinstance(prompt_, str):
prompts = [prompt_]
elif isinstance(prompt_, list) and all(isinstance(i, str) for i in prompt_):
prompts = prompt_
else:
raise InputFormatError(f"LLM Run expects string prompt input. Got {inputs}")
else:
raise InputFormatError(
f"LLM Run expects 'prompt' or 'prompts' in inputs. Got {inputs}"
)
if len(prompts) == 1:
return prompts[0]
else:
raise InputFormatError(
f"LLM Run expects single prompt input. Got {len(prompts)} prompts."
)
class ChatModelInput(TypedDict):
"""Input for a chat model.
Parameters:
messages: List of chat messages.
"""
messages: List[BaseMessage]
def _get_messages(inputs: Dict[str, Any]) -> dict:
"""Get Chat Messages from inputs.
Args:
inputs: The input dictionary.
Returns:
A list of chat messages.
Raises:
InputFormatError: If the input format is invalid.
"""
if not inputs:
raise InputFormatError("Inputs should not be empty.")
input_copy = inputs.copy()
if "messages" in inputs:
input_copy["input"] = input_copy.pop("messages")
elif len(inputs) == 1:
input_copy["input"] = next(iter(inputs.values()))
if "input" in input_copy:
raw_messages = input_copy["input"]
if isinstance(raw_messages, list) and all(
isinstance(i, dict) for i in raw_messages
):
raw_messages = [raw_messages]
if len(raw_messages) == 1:
input_copy["input"] = messages_from_dict(raw_messages[0])
else:
raise InputFormatError(
"Batch messages not supported. Please provide a"
" single list of messages."
)
return input_copy
else:
raise InputFormatError(
f"Chat Run expects single List[dict] or List[List[dict]] 'messages'"
f" input. Got {inputs}"
)
## Shared data validation utilities
def _validate_example_inputs_for_language_model(
first_example: Example,
input_mapper: Optional[Callable[[Dict], Any]],
) -> None:
if input_mapper:
prompt_input = input_mapper(first_example.inputs)
if not isinstance(prompt_input, str) and not (
isinstance(prompt_input, list)
and all(isinstance(msg, BaseMessage) for msg in prompt_input)
):
raise InputFormatError(
"When using an input_mapper to prepare dataset example inputs"
" for an LLM or chat model, the output must a single string or"
" a list of chat messages."
f"\nGot: {prompt_input} of type {type(prompt_input)}."
)
else:
try:
_get_prompt(first_example.inputs)
except InputFormatError:
try:
_get_messages(first_example.inputs)
except InputFormatError:
raise InputFormatError(
"Example inputs do not match language model input format. "
"Expected a dictionary with messages or a single prompt."
f" Got: {first_example.inputs}"
" Please update your dataset OR provide an input_mapper"
" to convert the example.inputs to a compatible format"
" for the llm or chat model you wish to evaluate."
)
def _validate_example_inputs_for_chain(
first_example: Example,
chain: Chain,
input_mapper: Optional[Callable[[Dict], Any]],
) -> None:
"""Validate that the example inputs match the chain input keys."""
if input_mapper:
first_inputs = input_mapper(first_example.inputs)
missing_keys = set(chain.input_keys).difference(first_inputs)
if not isinstance(first_inputs, dict):
raise InputFormatError(
"When using an input_mapper to prepare dataset example"
" inputs for a chain, the mapped value must be a dictionary."
f"\nGot: {first_inputs} of type {type(first_inputs)}."
)
if missing_keys:
raise InputFormatError(
"Missing keys after loading example using input_mapper."
f"\nExpected: {chain.input_keys}. Got: {first_inputs.keys()}"
)
else:
first_inputs = first_example.inputs
missing_keys = set(chain.input_keys).difference(first_inputs)
if len(first_inputs) == 1 and len(chain.input_keys) == 1:
# We can pass this through the run method.
# Refrain from calling to validate.
pass
elif missing_keys:
raise InputFormatError(
"Example inputs missing expected chain input keys."
" Please provide an input_mapper to convert the example.inputs"
" to a compatible format for the chain you wish to evaluate."
f"Expected: {chain.input_keys}. "
f"Got: {first_inputs.keys()}"
)
def _validate_example_inputs(
example: Example,
llm_or_chain_factory: MCF,
input_mapper: Optional[Callable[[Dict], Any]],
) -> None:
"""Validate that the example inputs are valid for the model."""
if isinstance(llm_or_chain_factory, BaseLanguageModel):
_validate_example_inputs_for_language_model(example, input_mapper)
else:
chain = llm_or_chain_factory()
if isinstance(chain, Chain):
# Otherwise it's a runnable
_validate_example_inputs_for_chain(example, chain, input_mapper)
elif isinstance(chain, Runnable):
logger.debug(f"Skipping input validation for {chain}")
## Shared Evaluator Setup Utilities
def _setup_evaluation(
llm_or_chain_factory: MCF,
examples: List[Example],
evaluation: Optional[smith_eval.RunEvalConfig],
data_type: DataType,
) -> Optional[List[RunEvaluator]]:
"""Configure the evaluators to run on the results of the chain."""
if evaluation:
if isinstance(llm_or_chain_factory, BaseLanguageModel):
run_inputs, run_outputs = None, None
run_type = "llm"
else:
run_type = "chain"
chain = llm_or_chain_factory()
run_inputs = chain.input_keys if isinstance(chain, Chain) else None
run_outputs = chain.output_keys if isinstance(chain, Chain) else None
run_evaluators = _load_run_evaluators(
evaluation,
run_type,
data_type,
list(examples[0].outputs) if examples[0].outputs else None,
run_inputs,
run_outputs,
)
else:
# TODO: Create a default helpfulness evaluator
run_evaluators = None
return run_evaluators
def _determine_input_key(
config: smith_eval.RunEvalConfig,
run_inputs: Optional[List[str]],
) -> Optional[str]:
input_key = None
if config.input_key:
input_key = config.input_key
if run_inputs and input_key not in run_inputs:
logger.warning(
f"Input key {input_key} not in chain's specified"
f" input keys {run_inputs}. Evaluation behavior may be undefined."
)
elif run_inputs and len(run_inputs) == 1:
input_key = run_inputs[0]
elif run_inputs is not None and len(run_inputs) > 1:
logger.warning(
f"Chain expects multiple input keys: {run_inputs},"
f" Evaluator is likely to fail. Evaluation behavior may be undefined."
" Specify an input_key in the RunEvalConfig to avoid this warning."
)
return input_key
def _determine_prediction_key(
config: smith_eval.RunEvalConfig,
run_outputs: Optional[List[str]],
) -> Optional[str]:
prediction_key = None
if config.prediction_key:
prediction_key = config.prediction_key
if run_outputs and prediction_key not in run_outputs:
logger.warning(
f"Prediction key {prediction_key} not in chain's specified"
f" output keys {run_outputs}. Evaluation behavior may be undefined."
)
elif run_outputs and len(run_outputs) == 1:
prediction_key = run_outputs[0]
elif run_outputs is not None and len(run_outputs) > 1:
logger.warning(
f"Chain expects multiple output keys: {run_outputs},"
f" Evaluation behavior may be undefined. Specify a prediction_key"
" in the RunEvalConfig to avoid this warning."
)
return prediction_key
def _determine_reference_key(
config: smith_eval.RunEvalConfig,
example_outputs: Optional[List[str]],
) -> Optional[str]:
if config.reference_key:
reference_key = config.reference_key
if example_outputs and reference_key not in example_outputs:
raise ValueError(
f"Reference key {reference_key} not in Dataset"
f" example outputs: {example_outputs}"
)
elif example_outputs and len(example_outputs) == 1:
reference_key = list(example_outputs)[0]
else:
reference_key = None
return reference_key
def _construct_run_evaluator(
eval_config: Union[
smith_eval_config.SINGLE_EVAL_CONFIG_TYPE,
smith_eval_config.CUSTOM_EVALUATOR_TYPE,
],
eval_llm: Optional[BaseLanguageModel],
run_type: str,
data_type: DataType,
example_outputs: Optional[List[str]],
reference_key: Optional[str],
input_key: Optional[str],
prediction_key: Optional[str],
) -> RunEvaluator:
if isinstance(eval_config, RunEvaluator):
return eval_config
if isinstance(eval_config, (EvaluatorType, str)):
if not isinstance(eval_config, EvaluatorType):
eval_config = EvaluatorType(eval_config)
evaluator_ = load_evaluator(eval_config, llm=eval_llm)
eval_type_tag = eval_config.value
elif isinstance(eval_config, smith_eval_config.EvalConfig):
kwargs = {"llm": eval_llm, **eval_config.get_kwargs()}
evaluator_ = load_evaluator(eval_config.evaluator_type, **kwargs)
eval_type_tag = eval_config.evaluator_type.value
# Override keys if specified in the config
if isinstance(eval_config, smith_eval_config.SingleKeyEvalConfig):
input_key = eval_config.input_key or input_key
prediction_key = eval_config.prediction_key or prediction_key
reference_key = eval_config.reference_key or reference_key
elif callable(eval_config):
# Assume we can decorate
return run_evaluator_dec(eval_config)
else:
raise ValueError(f"Unknown evaluator type: {type(eval_config)}")
if isinstance(evaluator_, StringEvaluator):
if evaluator_.requires_reference and reference_key is None:
raise ValueError(
f"Must specify reference_key in smith_eval.RunEvalConfig to use"
f" evaluator of type {eval_type_tag} with"
f" dataset with multiple output keys: {example_outputs}."
)
run_evaluator = smith_eval.StringRunEvaluatorChain.from_run_and_data_type(
evaluator_,
run_type,
data_type,
input_key=input_key,
prediction_key=prediction_key,
reference_key=reference_key,
tags=[eval_type_tag],
)
elif isinstance(evaluator_, PairwiseStringEvaluator):
raise NotImplementedError(
f"Run evaluator for {eval_type_tag} is not implemented."
" PairwiseStringEvaluators compare the outputs of two different models"
" rather than the output of a single model."
" Did you mean to use a StringEvaluator instead?"
"\nSee: https://python.langchain.com/docs/guides/evaluation/string/"
)
else:
raise NotImplementedError(
f"Run evaluator for {eval_type_tag} is not implemented"
)
return run_evaluator
def _get_keys(
config: smith_eval.RunEvalConfig,
run_inputs: Optional[List[str]],
run_outputs: Optional[List[str]],
example_outputs: Optional[List[str]],
) -> Tuple[Optional[str], Optional[str], Optional[str]]:
input_key = _determine_input_key(config, run_inputs)
prediction_key = _determine_prediction_key(config, run_outputs)
reference_key = _determine_reference_key(config, example_outputs)
return input_key, prediction_key, reference_key
def _load_run_evaluators(
config: smith_eval.RunEvalConfig,
run_type: str,
data_type: DataType,
example_outputs: Optional[List[str]],
run_inputs: Optional[List[str]],
run_outputs: Optional[List[str]],
) -> List[RunEvaluator]:
"""
Load run evaluators from a configuration.
Args:
config: Configuration for the run evaluators.
Returns:
A list of run evaluators.
"""
run_evaluators = []
input_key, prediction_key, reference_key = None, None, None
if config.evaluators or (
config.custom_evaluators
and any([isinstance(e, StringEvaluator) for e in config.custom_evaluators])
):
input_key, prediction_key, reference_key = _get_keys(
config, run_inputs, run_outputs, example_outputs
)
for eval_config in config.evaluators:
run_evaluator = _construct_run_evaluator(
eval_config,
config.eval_llm,
run_type,
data_type,
example_outputs,
reference_key,
input_key,
prediction_key,
)
run_evaluators.append(run_evaluator)
custom_evaluators = config.custom_evaluators or []
for custom_evaluator in custom_evaluators:
if isinstance(custom_evaluator, RunEvaluator):
run_evaluators.append(custom_evaluator)
elif isinstance(custom_evaluator, StringEvaluator):
run_evaluators.append(
smith_eval.StringRunEvaluatorChain.from_run_and_data_type(
custom_evaluator,
run_type,
data_type,
input_key=input_key,
prediction_key=prediction_key,
reference_key=reference_key,
)
)
elif callable(custom_evaluator):
run_evaluators.append(run_evaluator_dec(custom_evaluator))
else:
raise ValueError(
f"Unsupported custom evaluator: {custom_evaluator}."
f" Expected RunEvaluator or StringEvaluator."
)
return run_evaluators
### Async Helpers
async def _arun_llm(
llm: BaseLanguageModel,
inputs: Dict[str, Any],
*,
tags: Optional[List[str]] = None,
callbacks: Callbacks = None,
input_mapper: Optional[Callable[[Dict], Any]] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> Union[str, BaseMessage]:
"""Asynchronously run the language model.
Args:
llm: The language model to run.
inputs: The input dictionary.
tags: Optional tags to add to the run.
callbacks: Optional callbacks to use during the run.
input_mapper: Optional function to map inputs to the expected format.
Returns:
The LLMResult or ChatResult.
Raises:
ValueError: If the LLM type is unsupported.
InputFormatError: If the input format is invalid.
"""
if input_mapper is not None:
prompt_or_messages = input_mapper(inputs)
if (
isinstance(prompt_or_messages, str)
or isinstance(prompt_or_messages, list)
and all(isinstance(msg, BaseMessage) for msg in prompt_or_messages)
):
return await llm.ainvoke(
prompt_or_messages,
config=RunnableConfig(
callbacks=callbacks, tags=tags or [], metadata=metadata or {}
),
)
else:
raise InputFormatError(
"Input mapper returned invalid format"
f" {prompt_or_messages}"
"\nExpected a single string or list of chat messages."
)
else:
try:
prompt = _get_prompt(inputs)
llm_output: Union[str, BaseMessage] = await llm.ainvoke(
prompt,
config=RunnableConfig(
callbacks=callbacks, tags=tags or [], metadata=metadata or {}
),
)
except InputFormatError:
llm_inputs = _get_messages(inputs)
llm_output = await llm.ainvoke(
**llm_inputs,
config=RunnableConfig(
callbacks=callbacks, tags=tags or [], metadata=metadata or {}
),
)
return llm_output
async def _arun_chain(
chain: Union[Chain, Runnable],
inputs: Dict[str, Any],
callbacks: Callbacks,
*,
tags: Optional[List[str]] = None,
input_mapper: Optional[Callable[[Dict], Any]] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> Union[dict, str]:
"""Run a chain asynchronously on inputs."""
inputs_ = inputs if input_mapper is None else input_mapper(inputs)
if (
isinstance(chain, Chain)
and isinstance(inputs_, dict)
and len(inputs_) == 1
and chain.input_keys
):
val = next(iter(inputs_.values()))
output = await chain.ainvoke(
val,
config=RunnableConfig(
callbacks=callbacks, tags=tags or [], metadata=metadata or {}
),
)
else:
runnable_config = RunnableConfig(
tags=tags or [], callbacks=callbacks, metadata=metadata or {}
)
output = await chain.ainvoke(inputs_, config=runnable_config)
return output
async def _arun_llm_or_chain(
example: Example,
config: RunnableConfig,
*,
llm_or_chain_factory: MCF,
input_mapper: Optional[Callable[[Dict], Any]] = None,
) -> Union[dict, str, LLMResult, ChatResult]:
"""Asynchronously run the Chain or language model.
Args:
example: The example to run.
llm_or_chain_factory: The Chain or language model constructor to run.
tags: Optional tags to add to the run.
callbacks: Optional callbacks to use during the run.
input_mapper: Optional function to map the input to the expected format.
Returns:
A list of outputs.
"""
chain_or_llm = (
"LLM" if isinstance(llm_or_chain_factory, BaseLanguageModel) else "Chain"
)
result = None
try:
if isinstance(llm_or_chain_factory, BaseLanguageModel):
output: Any = await _arun_llm(
llm_or_chain_factory,
example.inputs,
tags=config["tags"],
callbacks=config["callbacks"],
input_mapper=input_mapper,
metadata=config.get("metadata"),
)
else:
chain = llm_or_chain_factory()
output = await _arun_chain(
chain,
example.inputs,
tags=config["tags"],
callbacks=config["callbacks"],
input_mapper=input_mapper,
metadata=config.get("metadata"),
)
result = output
except Exception as e:
logger.warning(
f"{chain_or_llm} failed for example {example.id} "
f"with inputs {example.inputs}"
f"\n{repr(e)}"
)
result = EvalError(Error=e)
return result
## Sync Utilities
def _run_llm(
llm: BaseLanguageModel,
inputs: Dict[str, Any],
callbacks: Callbacks,
*,
tags: Optional[List[str]] = None,
input_mapper: Optional[Callable[[Dict], Any]] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> Union[str, BaseMessage]:
"""
Run the language model on the example.
Args:
llm: The language model to run.
inputs: The input dictionary.
callbacks: The callbacks to use during the run.
tags: Optional tags to add to the run.
input_mapper: function to map to the inputs dictionary from an Example
Returns:
The LLMResult or ChatResult.
Raises:
ValueError: If the LLM type is unsupported.
InputFormatError: If the input format is invalid.
"""
# Most of this is legacy code; we could probably remove a lot of it.
if input_mapper is not None:
prompt_or_messages = input_mapper(inputs)
if (
isinstance(prompt_or_messages, str)
or isinstance(prompt_or_messages, list)
and all(isinstance(msg, BaseMessage) for msg in prompt_or_messages)
):
llm_output: Union[str, BaseMessage] = llm.invoke(
prompt_or_messages,
config=RunnableConfig(
callbacks=callbacks, tags=tags or [], metadata=metadata or {}
),
)
else:
raise InputFormatError(
"Input mapper returned invalid format: "
f" {prompt_or_messages}"
"\nExpected a single string or list of chat messages."
)
else:
try:
llm_prompts = _get_prompt(inputs)
llm_output = llm.invoke(
llm_prompts,
config=RunnableConfig(
callbacks=callbacks, tags=tags or [], metadata=metadata or {}
),
)
except InputFormatError:
llm_inputs = _get_messages(inputs)
llm_output = llm.invoke(
**llm_inputs,
config=RunnableConfig(callbacks=callbacks, metadata=metadata or {}),
)
return llm_output
def _run_chain(
chain: Union[Chain, Runnable],
inputs: Dict[str, Any],
callbacks: Callbacks,
*,
tags: Optional[List[str]] = None,
input_mapper: Optional[Callable[[Dict], Any]] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> Union[Dict, str]:
"""Run a chain on inputs."""
inputs_ = inputs if input_mapper is None else input_mapper(inputs)
if (
isinstance(chain, Chain)
and isinstance(inputs_, dict)
and len(inputs_) == 1
and chain.input_keys
):
val = next(iter(inputs_.values()))
output = chain.invoke(
val,
config=RunnableConfig(
callbacks=callbacks, tags=tags or [], metadata=metadata or {}
),
)
else:
runnable_config = RunnableConfig(
tags=tags or [], callbacks=callbacks, metadata=metadata or {}
)
output = chain.invoke(inputs_, config=runnable_config)
return output
def _run_llm_or_chain(
example: Example,
config: RunnableConfig,
*,
llm_or_chain_factory: MCF,
input_mapper: Optional[Callable[[Dict], Any]] = None,
) -> Union[dict, str, LLMResult, ChatResult]:
"""
Run the Chain or language model synchronously.
Args:
example: The example to run.
llm_or_chain_factory: The Chain or language model constructor to run.
tags: Optional tags to add to the run.
callbacks: Optional callbacks to use during the run.
Returns:
Union[List[dict], List[str], List[LLMResult], List[ChatResult]]:
The outputs of the model or chain.
"""
chain_or_llm = (
"LLM" if isinstance(llm_or_chain_factory, BaseLanguageModel) else "Chain"
)
result = None
try:
if isinstance(llm_or_chain_factory, BaseLanguageModel):
output: Any = _run_llm(
llm_or_chain_factory,
example.inputs,
config["callbacks"],
tags=config["tags"],
input_mapper=input_mapper,
metadata=config.get("metadata"),
)
else:
chain = llm_or_chain_factory()
output = _run_chain(
chain,
example.inputs,
config["callbacks"],
tags=config["tags"],
input_mapper=input_mapper,
metadata=config.get("metadata"),
)
result = output
except Exception as e:
error_type = type(e).__name__
logger.warning(
f"{chain_or_llm} failed for example {example.id} "
f"with inputs {example.inputs}"
f"\nError Type: {error_type}, Message: {e}"
)
result = EvalError(Error=e)
return result
def _prepare_eval_run(
client: Client,
dataset_name: str,
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
project_name: str,
project_metadata: Optional[Dict[str, Any]] = None,
tags: Optional[List[str]] = None,
dataset_version: Optional[Union[str, datetime]] = None,
) -> Tuple[MCF, TracerSession, Dataset, List[Example]]:
wrapped_model = _wrap_in_chain_factory(llm_or_chain_factory, dataset_name)
dataset = client.read_dataset(dataset_name=dataset_name)
examples = list(client.list_examples(dataset_id=dataset.id, as_of=dataset_version))
if not examples:
raise ValueError(f"Dataset {dataset_name} has no example rows.")
modified_at = [ex.modified_at for ex in examples if ex.modified_at]
# Should always be defined in practice when fetched,
# but the typing permits None
max_modified_at = max(modified_at) if modified_at else None
inferred_version = max_modified_at.isoformat() if max_modified_at else None
try:
project_metadata = project_metadata or {}
git_info = get_git_info()
if git_info:
project_metadata = {
**project_metadata,
"git": git_info,
}
project_metadata["dataset_version"] = inferred_version
project = client.create_project(
project_name,
reference_dataset_id=dataset.id,
project_extra={"tags": tags} if tags else {},
metadata=project_metadata,
)
except (HTTPError, ValueError, LangSmithError) as e:
if "already exists " not in str(e):
raise e
uid = uuid.uuid4()
example_msg = f"""
run_on_dataset(
...
project_name="{project_name} - {uid}", # Update since {project_name} already exists
)
"""
raise ValueError(
f"Test project {project_name} already exists. Please use a different name:"
f"\n\n{example_msg}"
)
comparison_url = dataset.url + f"/compare?selectedSessions={project.id}"
print( # noqa: T201
f"View the evaluation results for project '{project_name}'"
f" at:\n{comparison_url}\n\n"
f"View all tests for Dataset {dataset_name} at:\n{dataset.url}",
flush=True,
)
return wrapped_model, project, dataset, examples
class _RowResult(TypedDict, total=False):
"""A dictionary of the results for a single example row."""
feedback: Optional[List[EvaluationResult]]
execution_time: Optional[float]
run_id: Optional[str]
@dataclasses.dataclass
class _DatasetRunContainer:
"""A container to help manage the state of a eval run."""
client: Client
project: TracerSession
wrapped_model: MCF
examples: List[Example]
configs: List[RunnableConfig]
batch_evaluators: Optional[List[smith_eval_config.BATCH_EVALUATOR_LIKE]] = None
def _merge_test_outputs(
self,
batch_results: list,
all_eval_results: Dict[str, _RowResult],
) -> dict:
results: dict = {}
for example, output in zip(self.examples, batch_results):
row_result = cast(_RowResult, all_eval_results.get(str(example.id), {}))
results[str(example.id)] = {
"input": example.inputs,
"feedback": row_result.get("feedback", []),
"execution_time": row_result.get("execution_time"),
"run_id": row_result.get("run_id"),
}
if isinstance(output, EvalError):
results[str(example.id)]["Error"] = output.Error
else:
results[str(example.id)]["output"] = output
if example.outputs:
results[str(example.id)]["reference"] = example.outputs
return results
def _run_batch_evaluators(self, runs: Dict[str, Run]) -> List[dict]:
evaluators = self.batch_evaluators
if not evaluators:
return []
runs_list = [runs[str(example.id)] for example in self.examples]
aggregate_feedback = []
with concurrent.futures.ThreadPoolExecutor() as executor:
for evaluator in evaluators:
try:
result = evaluator(runs_list, self.examples)
if isinstance(result, EvaluationResult):
result = result.dict()
aggregate_feedback.append(cast(dict, result))
executor.submit(
self.client.create_feedback,
**result,
run_id=None,
project_id=self.project.id,
)
except Exception as e:
logger.error(
f"Error running batch evaluator {repr(evaluator)}: {e}"
)
return aggregate_feedback
def _collect_metrics(self) -> Tuple[Dict[str, _RowResult], Dict[str, Run]]:
all_eval_results: dict = {}
all_runs: dict = {}
for c in self.configs:
for callback in cast(list, c["callbacks"]):
if isinstance(callback, EvaluatorCallbackHandler):
eval_results = callback.logged_eval_results
for (_, example_id), v in eval_results.items():
all_eval_results.setdefault(str(example_id), {}).update(
{"feedback": v}
)
elif isinstance(callback, LangChainTracer):
run = callback.latest_run
execution_time = (
(run.end_time - run.start_time).total_seconds()
if run and run.end_time
else None
)
run_id = str(run.id) if run else None
all_eval_results.setdefault(str(callback.example_id), {}).update(
{
"execution_time": execution_time,
"run_id": run_id,
"run": run,
}
)
all_runs[str(callback.example_id)] = run
return cast(Dict[str, _RowResult], all_eval_results), all_runs
def _collect_test_results(
self,
batch_results: List[Union[dict, str, LLMResult, ChatResult]],
) -> TestResult:
logger.info("Waiting for evaluators to complete.")
wait_for_all_evaluators()
all_eval_results, all_runs = self._collect_metrics()
aggregate_feedback = None
if self.batch_evaluators:
logger.info("Running session evaluators.")
aggregate_feedback = self._run_batch_evaluators(all_runs)
results = self._merge_test_outputs(batch_results, all_eval_results)
return TestResult(
project_name=self.project.name,
results=results,
aggregate_metrics=aggregate_feedback,
)
def finish(self, batch_results: list, verbose: bool = False) -> TestResult:
results = self._collect_test_results(batch_results)
if verbose:
try:
agg_feedback = results.get_aggregate_feedback()
_display_aggregate_results(agg_feedback)
except Exception as e:
logger.debug(f"Failed to print aggregate feedback: {repr(e)}")
try:
# Closing the project permits name changing and metric optimizations
self.client.update_project(
self.project.id, end_time=datetime.now(timezone.utc)
)
except Exception as e:
logger.debug(f"Failed to close project: {repr(e)}")
return results
@classmethod
def prepare(
cls,
client: Client,
dataset_name: str,
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
project_name: Optional[str],
evaluation: Optional[smith_eval.RunEvalConfig] = None,
tags: Optional[List[str]] = None,
input_mapper: Optional[Callable[[Dict], Any]] = None,
concurrency_level: int = 5,
project_metadata: Optional[Dict[str, Any]] = None,
revision_id: Optional[str] = None,
dataset_version: Optional[Union[datetime, str]] = None,
) -> _DatasetRunContainer:
project_name = project_name or name_generation.random_name()
if revision_id:
if not project_metadata:
project_metadata = {}
project_metadata.update({"revision_id": revision_id})
wrapped_model, project, dataset, examples = _prepare_eval_run(
client,
dataset_name,
llm_or_chain_factory,
project_name,
project_metadata=project_metadata,
tags=tags,
dataset_version=dataset_version,
)
tags = tags or []
for k, v in (project.metadata.get("git") or {}).items():
tags.append(f"git:{k}={v}")
run_metadata = {"dataset_version": project.metadata["dataset_version"]}
if revision_id:
run_metadata["revision_id"] = revision_id
wrapped_model = _wrap_in_chain_factory(llm_or_chain_factory)
run_evaluators = _setup_evaluation(
wrapped_model, examples, evaluation, dataset.data_type or DataType.kv
)
_validate_example_inputs(examples[0], wrapped_model, input_mapper)
progress_bar = progress.ProgressBarCallback(len(examples))
configs = [
RunnableConfig(
callbacks=[
LangChainTracer(
project_name=project.name,
client=client,
example_id=example.id,
),
EvaluatorCallbackHandler(
evaluators=run_evaluators or [],
client=client,
example_id=example.id,
max_concurrency=0,
),
progress_bar,
],
tags=tags,
max_concurrency=concurrency_level,
metadata=run_metadata,
)
for example in examples
]
return cls(
client=client,
project=project,
wrapped_model=wrapped_model,
examples=examples,
configs=configs,
batch_evaluators=evaluation.batch_evaluators if evaluation else None,
)
def _is_jupyter_environment() -> bool:
try:
from IPython import get_ipython
res = get_ipython()
return get_ipython() is not None and "zmqshell" in str(type(res))
except ImportError:
return False
def _display_aggregate_results(aggregate_results: pd.DataFrame) -> None:
if _is_jupyter_environment():
from IPython.display import HTML, display
display(HTML("<h3>Experiment Results:</h3>"))
display(aggregate_results)
else:
formatted_string = aggregate_results.to_string(
float_format=lambda x: f"{x:.2f}", justify="right"
)
print("\n Experiment Results:") # noqa: T201
print(formatted_string) # noqa: T201
_INPUT_MAPPER_DEP_WARNING = (
"The input_mapper argument is deprecated and "
"will be removed in a future release. Please add a "
" RunnableLambda to your chain to map inputs to the expected format"
" instead. Example:\n"
"def construct_chain():\n"
" my_chain = ...\n"
" input_mapper = {'other_key': 'MyOtherInput', 'my_input_key': x}\n"
" return input_mapper | my_chain\n"
"run_on_dataset(..., llm_or_chain_factory=construct_chain)\n"
"(See https://api.python.langchain.com/en/latest/schema/"
"langchain.schema.runnable.base.RunnableLambda.html)"
)
## Public API
async def arun_on_dataset(
client: Optional[Client],
dataset_name: str,
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
*,
evaluation: Optional[smith_eval.RunEvalConfig] = None,
dataset_version: Optional[Union[datetime, str]] = None,
concurrency_level: int = 5,
project_name: Optional[str] = None,
project_metadata: Optional[Dict[str, Any]] = None,
verbose: bool = False,
revision_id: Optional[str] = None,
**kwargs: Any,
) -> Dict[str, Any]:
input_mapper = kwargs.pop("input_mapper", None)
if input_mapper:
warn_deprecated("0.0.305", message=_INPUT_MAPPER_DEP_WARNING, pending=True)
if revision_id is None:
revision_id = get_langchain_env_var_metadata().get("revision_id")
tags = kwargs.pop("tags", None)
if tags:
warn_deprecated(
"0.1.9",
message="The tags argument is deprecated and will be"
" removed in a future release. Please specify project_metadata instead.",
pending=True,
)
if kwargs:
warn_deprecated(
"0.0.305",
message="The following arguments are deprecated and "
"will be removed in a future release: "
f"{kwargs.keys()}.",
removal="0.0.305",
)
client = client or Client()
container = _DatasetRunContainer.prepare(
client,
dataset_name,
llm_or_chain_factory,
project_name,
evaluation,
tags,
input_mapper,
concurrency_level,
project_metadata=project_metadata,
revision_id=revision_id,
dataset_version=dataset_version,
)
batch_results = await runnable_utils.gather_with_concurrency(
container.configs[0].get("max_concurrency"),
*map(
functools.partial(
_arun_llm_or_chain,
llm_or_chain_factory=container.wrapped_model,
input_mapper=input_mapper,
),
container.examples,
container.configs,
),
)
return container.finish(batch_results, verbose=verbose)
def run_on_dataset(
client: Optional[Client],
dataset_name: str,
llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY,
*,
evaluation: Optional[smith_eval.RunEvalConfig] = None,
dataset_version: Optional[Union[datetime, str]] = None,
concurrency_level: int = 5,
project_name: Optional[str] = None,
project_metadata: Optional[Dict[str, Any]] = None,
verbose: bool = False,
revision_id: Optional[str] = None,
**kwargs: Any,
) -> Dict[str, Any]:
input_mapper = kwargs.pop("input_mapper", None)
if input_mapper:
warn_deprecated("0.0.305", message=_INPUT_MAPPER_DEP_WARNING, pending=True)
tags = kwargs.pop("tags", None)
if tags:
warn_deprecated(
"0.1.9",
message="The tags argument is deprecated and will be"
" removed in a future release. Please specify project_metadata instead.",
pending=True,
)
if revision_id is None:
revision_id = get_langchain_env_var_metadata().get("revision_id")
if kwargs:
warn_deprecated(
"0.0.305",
message="The following arguments are deprecated and "
"will be removed in a future release: "
f"{kwargs.keys()}.",
removal="0.0.305",
)
client = client or Client()
container = _DatasetRunContainer.prepare(
client,
dataset_name,
llm_or_chain_factory,
project_name,
evaluation,
tags,
input_mapper,
concurrency_level,
project_metadata=project_metadata,
revision_id=revision_id,
dataset_version=dataset_version,
)
if concurrency_level == 0:
batch_results = [
_run_llm_or_chain(
example,
config,
llm_or_chain_factory=container.wrapped_model,
input_mapper=input_mapper,
)
for example, config in zip(container.examples, container.configs)
]
else:
with runnable_config.get_executor_for_config(container.configs[0]) as executor:
batch_results = list(
executor.map(
functools.partial(
_run_llm_or_chain,
llm_or_chain_factory=container.wrapped_model,
input_mapper=input_mapper,
),
container.examples,
container.configs,
)
)
return container.finish(batch_results, verbose=verbose)
_RUN_ON_DATASET_DOCSTRING = """
Run the Chain or language model on a dataset and store traces
to the specified project name.
Args:
dataset_name: Name of the dataset to run the chain on.
llm_or_chain_factory: Language model or Chain constructor to run
over the dataset. The Chain constructor is used to permit
independent calls on each example without carrying over state.
evaluation: Configuration for evaluators to run on the
results of the chain
concurrency_level: The number of async tasks to run concurrently.
project_name: Name of the project to store the traces in.
Defaults to {dataset_name}-{chain class name}-{datetime}.
project_metadata: Optional metadata to add to the project.
Useful for storing information the test variant.
(prompt version, model version, etc.)
client: LangSmith client to use to access the dataset and to
log feedback and run traces.
verbose: Whether to print progress.
tags: Tags to add to each run in the project.
revision_id: Optional revision identifier to assign this test run to
track the performance of different versions of your system.
Returns:
A dictionary containing the run's project name and the resulting model outputs.
For the (usually faster) async version of this function, see :func:`arun_on_dataset`.
Examples
--------
.. code-block:: python
from langsmith import Client
from langchain_openai import ChatOpenAI
from langchain.chains import LLMChain
from langchain.smith import smith_eval.RunEvalConfig, run_on_dataset
# Chains may have memory. Passing in a constructor function lets the
# evaluation framework avoid cross-contamination between runs.
def construct_chain():
llm = ChatOpenAI(temperature=0)
chain = LLMChain.from_string(
llm,
"What's the answer to {your_input_key}"
)
return chain
# Load off-the-shelf evaluators via config or the EvaluatorType (string or enum)
evaluation_config = smith_eval.RunEvalConfig(
evaluators=[
"qa", # "Correctness" against a reference answer
"embedding_distance",
smith_eval.RunEvalConfig.Criteria("helpfulness"),
smith_eval.RunEvalConfig.Criteria({
"fifth-grader-score": "Do you have to be smarter than a fifth grader to answer this question?"
}),
]
)
client = Client()
run_on_dataset(
client,
dataset_name="<my_dataset_name>",
llm_or_chain_factory=construct_chain,
evaluation=evaluation_config,
)
You can also create custom evaluators by subclassing the
:class:`StringEvaluator <langchain.evaluation.schema.StringEvaluator>`
or LangSmith's `RunEvaluator` classes.
.. code-block:: python
from typing import Optional
from langchain.evaluation import StringEvaluator
class MyStringEvaluator(StringEvaluator):
@property
def requires_input(self) -> bool:
return False
@property
def requires_reference(self) -> bool:
return True
@property
def evaluation_name(self) -> str:
return "exact_match"
def _evaluate_strings(self, prediction, reference=None, input=None, **kwargs) -> dict:
return {"score": prediction == reference}
evaluation_config = smith_eval.RunEvalConfig(
custom_evaluators = [MyStringEvaluator()],
)
run_on_dataset(
client,
dataset_name="<my_dataset_name>",
llm_or_chain_factory=construct_chain,
evaluation=evaluation_config,
)
""" # noqa: E501
run_on_dataset.__doc__ = _RUN_ON_DATASET_DOCSTRING
arun_on_dataset.__doc__ = _RUN_ON_DATASET_DOCSTRING.replace(
"run_on_dataset(", "await arun_on_dataset("
)
|