Spaces:
Runtime error
Runtime error
File size: 7,552 Bytes
d8d9de5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# GPT3 code. Nonsensical on the sketch.
import cv2
import numpy as np
import gradio as gr
import colorsys
POLYFACTOR = 1.5 # Small lines are detected as shapes.
CCOLOUR = 0 # Should be a form controlled thing.
COLREG = None # Computer colour regions. Array. Extended whenever a new colour is requested.
IDIM = 256
CBLACK = 255
VARIANT = 0 # Ensures that the sketch canvas is actually refreshed.
# BREAKTHROUGH:
# Sketch can be overridden via controlnet method of creation, an np array with type,
# when varying the shape a bit.
def generate_unique_colors(n):
"""Generate n visually distinct colors as a list of RGB tuples.
Uses the hue of hsv, with balanced saturation & value.
"""
hsv_colors = [(x*1.0/n, 0.5, 0.5) for x in range(n)]
rgb_colors = [tuple(int(i * CBLACK) for i in colorsys.hsv_to_rgb(*hsv)) for hsv in hsv_colors]
return rgb_colors
def deterministic_colours(n, lcol = None):
"""Generate n visually distinct & consistent colours as a list of RGB tuples.
Uses the hue of hsv, with balanced saturation & value.
Goes around the cyclical 0-256 and picks each /2 value for every round.
Continuation rules: If pcyv != ccyv in next round, then we don't care.
If pcyv == ccyv, we want to get the cval + delta of last elem.
If lcol > n, will return it as is.
"""
if n <= 0:
return None
pcyc = -1
cval = 0
if lcol is None:
st = 0
elif n <= len(lcol):
# return lcol[:n] # Truncating the list is accurate, but pointless.
return lcol
else:
st = len(lcol)
if st > 0:
pcyc = np.ceil(np.log2(st))
# This is erroneous on st=2^n, but we don't care.
dlt = 1 / (2 ** pcyc)
cval = dlt + 2 * dlt * (st % (2 ** (pcyc - 1)) - 1)
lhsv = []
for i in range(st,n):
ccyc = np.ceil(np.log2(i + 1))
if ccyc == 0: # First col = 0.
cval = 0
pcyc = ccyc
elif pcyc != ccyc: # New cycle, start from the half point between 0 and first point.
dlt = 1 / (2 ** ccyc)
cval = dlt
pcyc = ccyc
else:
cval = cval + 2 * dlt # Jumps over existing vals.
lhsv.append(cval)
lhsv = [(v, 0.5, 0.5) for v in lhsv] # Hsv conversion only works 0:1.
lrgb = [colorsys.hsv_to_rgb(*hsv) for hsv in lhsv]
lrgb = (np.array(lrgb) * (CBLACK + 1)).astype(np.uint8) # Convert to colour uints.
lrgb = lrgb.reshape(-1, 3)
if lcol is not None:
lrgb = np.concatenate([lcol, lrgb])
return lrgb
def detect_polygons(img,num):
global CCOLOUR
global COLREG
global VARIANT
# I dunno why, but mask has a 4th colour channel, which contains nothing. Alpha?
if VARIANT != 0:
out = img["image"][:-VARIANT,:-VARIANT,:3]
img = img["mask"][:-VARIANT,:-VARIANT,:3]
else:
out = img["image"][:,:,:3]
img = img["mask"][:,:,:3]
# Convert the binary image to grayscale
if img is None:
img = np.zeros([IDIM,IDIM,3],dtype = np.uint8) + CBLACK # Stupid cv.
if out is None:
out = np.zeros_like(img) + CBLACK # Stupid cv.
bimg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Find contours in the image
# Must reverse colours, otherwise draws an outer box (0->255). Dunno why gradio uses 255 for white anyway.
contours, hierarchy = cv2.findContours(bimg, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#img2 = np.zeros_like(img) + 255 # Fresh image.
img2 = out # Update current image.
# color = np.random.randint(0,255,3)
# color = deterministic_colours(CCOLOUR + 1)[-1]
# CCOLOUR = CCOLOUR +1
COLREG = deterministic_colours(int(num) + 1, COLREG)
color = COLREG[int(num),:]
# Loop through each contour and detect polygons
for cnt in contours:
# Approximate the contour to a polygon
approx = cv2.approxPolyDP(cnt, 0.0001 * cv2.arcLength(cnt, True), True)
# If the polygon has 3 or more sides and is fully enclosed, fill it with a random color
# if len(approx) >= 3: # BAD test.
if cv2.contourArea(cnt) > cv2.arcLength(cnt, True) * POLYFACTOR: # Better, still messes up on large brush.
#SBM BUGGY, prevents contours from . cv2.pointPolygonTest(approx, (approx[0][0][0], approx[0][0][1]), False) >= 0:
# Check if the polygon has already been filled
# if i not in filled_polygons: # USELESS
# Draw the polygon on the image with a new random color
color = [int(v) for v in color] # Opencv is dumb / C based and can't handle an int64 array.
#cv2.drawContours(img2, [approx], 0, color = color) # Only outer sketch.
cv2.fillPoly(img2,[approx],color = color)
# Add the polygon to the set of filled polygons
# filled_polygons.add(i)
# Convert the grayscale image back to RGB
#img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2RGB) # Converting to grayscale is dumb.
skimg = create_canvas(img2.shape[0], img2.shape[1])
if VARIANT != 0:
skimg[:-VARIANT,:-VARIANT,:] = img2
else:
skimg[:,:,:] = img2
return skimg, num + 1 if num + 1 <= CBLACK else num
def detect_mask(img,num):
color = deterministic_colours(int(num) + 1)[-1]
color = color.reshape([1,1,3])
mask = ((img["image"] == color).all(-1)) * CBLACK
return mask
def create_canvas(h, w):
"""New canvas area.
Small variant value is added (and ignored later) due to gradio refresh bug.
"""
global VARIANT
VARIANT = 1 - VARIANT
vret = np.zeros(shape=(h + VARIANT, w + VARIANT, 3), dtype=np.uint8) + CBLACK
return vret
# Define the Gradio interface
# Create the Gradio interface and link it to the polygon detection function
# gr.Interface(detect_polygons, inputs=[sketch,output], outputs=output, title="Polygon Detection",
# description="Detect and fill closed shapes with different random colors.").launch()
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
# Gradio shape is dumb.
# sketch = gr.Image(shape=(IDIM, IDIM),source = "canvas", tool = "color-sketch")#,brush_radius = 1) # No brush radius in 16.2.
sketch = gr.Image(source = "upload", mirror_webcam = False, type = "numpy", tool = "sketch")
# sketch = gr.Image(shape=(256, 256),source = "upload", tool = "color-sketch")
#num = gr.Number(value = 0)
num = gr.Slider(label="Region", minimum=0, maximum=CBLACK, step=1, value=0)
btn = gr.Button(value = "Draw region")
btn2 = gr.Button(value = "Display mask")
canvas_width = gr.Slider(label="Canvas Width", minimum=64, maximum=2048, value=512, step=8)
canvas_height = gr.Slider(label="Canvas Height", minimum=64, maximum=2048, value=512, step=8)
cbtn = gr.Button(value="Create mask area")
with gr.Column():
# Cannot update sketch in 16.2, must add to different image.
# output = gr.Image(shape=(IDIM, IDIM), source = "upload")
# output = gr.Image(source = "upload")
output2 = gr.Image(shape=(IDIM, IDIM))
btn.click(detect_polygons, inputs = [sketch,num], outputs = [sketch,num])
btn2.click(detect_mask, inputs = [sketch,num], outputs = [output2])
cbtn.click(fn=create_canvas, inputs=[canvas_height, canvas_width], outputs=[sketch])
if __name__ == "__main__":
demo.launch()
|