File size: 14,589 Bytes
8d3e73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import gc
import logging

import numpy as np
import torch
from PIL import Image
from torch.nn.functional import softmax
from transformers import AutoModel, AutoTokenizer

from neus_v.vlm.internvl_utils import (
    assign_device_map,
    load_image,
    load_video_from_file,
    load_video_from_seq_of_frames,
    split_model,
)
from neus_v.vlm.obj import DetectedObject

MODEL_PATH = {
    "InternVL2-40B": "HuggingFace Model",
    "InternVL2-8B": "HuggingFace Model",
    "InternVL2-2B": "HuggingFace Model",
}


class InternVL:
    """InternVL's Vision Language Model."""

    def __init__(
        self,
        model_name: str = "InternVL2-8B",
        multi_gpus: bool = False,
        device: int = 0,
    ) -> None:
        """Initialization the InternVL."""
        logging.info(
            (
                "You are using the model based on HuggingFace API.",
                "The model will be downloaded to the HuggingFace cache dir.",
            )
        )
        self.model_name = model_name
        self._path = f"OpenGVLab/{model_name}"
        self._num_gpus = torch.cuda.device_count()
        self.device = device
        if multi_gpus:
            device_map = split_model(model_name)
        else:
            device_map = assign_device_map(model_name=model_name, manual_gpu_id=device)
        self.model = AutoModel.from_pretrained(
            self._path,
            torch_dtype=torch.bfloat16,
            low_cpu_mem_usage=True,
            use_flash_attn=True,
            trust_remote_code=True,
            device_map=device_map,
        ).eval()
        self.model.apply(self.move_tensors_to_gpu)
        self.tokenizer = AutoTokenizer.from_pretrained(self._path, trust_remote_code=True, use_fast=False)

    def reset_model(self) -> None:
        """Reset the model to its initial state using pretrained weights."""
        self.model = AutoModel.from_pretrained(
            self._path,
            torch_dtype=torch.bfloat16,
            low_cpu_mem_usage=True,
            use_flash_attn=True,
            trust_remote_code=True,
        ).eval()
        self.model.apply(self.move_tensors_to_gpu)

    def clear_gpu_memory(self) -> None:
        """Clear CUDA cache and run garbage collection to free GPU memory."""
        torch.cuda.empty_cache()
        if torch.cuda.is_available():
            torch.cuda.ipc_collect()
        gc.collect()  # Run garbage collector

    def move_tensors_to_gpu(
        self,
        module: torch.nn.Module,
    ) -> None:
        """Move all tensors in the module to GPU if they are on the CPU."""
        for name, tensor in module.named_buffers():
            if isinstance(tensor, torch.Tensor) and tensor.device.type == "cpu":
                module.register_buffer(
                    name,
                    tensor.cuda(self.device),
                    persistent=False,
                )
        for _, param in module.named_parameters():
            if param.device.type == "cpu":
                param.data = param.data.cuda(self.device)

    def infer_with_image(
        self,
        language: str,
        image: np.ndarray | None = None,
        image_path: str | None = None,
        max_new_tokens: int = 1024,
        do_sample: bool = True,
    ) -> str:
        """Perform image inference with given video inputs."""
        assert (  # noqa: S101
            image is not None or image_path is not None
        ), "One of 'image' or 'image_path' must be defined."
        if image_path:
            image = Image.open(image_path).convert("RGB")
        else:
            image = Image.fromarray(image)
        # set the max number of tiles in `max_num`
        pixel_values = load_image(image, max_num=12).to(torch.bfloat16).cuda(self.device)
        generation_config = {
            "max_new_tokens": max_new_tokens,
            "do_sample": do_sample,
        }
        image_prefix = "<image>\n"
        language = image_prefix + language
        return self.model.chat(self.tokenizer, pixel_values, language, generation_config)

    def infer_with_video(
        self,
        language: str,
        seq_of_frames: list[np.ndarray] | None = None,
        video_path: str | None = None,
        max_new_tokens: int = 1024,
        do_sample: bool = True,
    ) -> str:
        """Perform image inference with given video inputs."""
        assert (  # noqa: S101
            seq_of_frames is not None or video_path is not None
        ), "One of 'seq_of_frames' or 'video_path' must be defined."
        generation_config = {
            "max_new_tokens": max_new_tokens,
            "do_sample": do_sample,
        }
        if video_path:
            pixel_values, num_patches_list = load_video_from_file(video_path)
        else:
            pixel_values, num_patches_list = load_video_from_seq_of_frames(seq_of_frames=seq_of_frames)
        video_prefix = "".join([f"Frame{i+1}: <image>\n" for i in range(len(num_patches_list))])
        language = video_prefix + language
        return self.model.chat(
            self.tokenizer,
            pixel_values,
            language,
            generation_config,
            num_patches_list=num_patches_list,
            history=None,
            return_history=True,
        )

    def detect(
        self,
        scene_description: str,
        frame_img: np.ndarray | None = None,
        seq_of_frames: list[np.ndarray] | None = None,
        video_path: str | None = None,
        threshold: float = 0.349,
        confidence_as_token_probability: bool = True,
    ) -> DetectedObject:
        """Detect objects in the given frame image.

        Args:
            frame_img (np.ndarray): The image frame to process.
            scene_description (str): Description of the scene.
            seq_of_frames (list[np.ndarray] | None):
                List of video frames to process.
            video_path (str | None): Path to video file to process.
            threshold (float): Detection threshold.
            confidence_as_token_probability (bool):
                Whether to use token probabilities for confidence.

        Returns:
            DetectedObject: Detected objects with their details.
        """
        if confidence_as_token_probability:
            parsing_rule = [
                "You must only return a Yes or No, and not both, to any question asked. "  # noqa: E501
                "You must not include any other symbols, information, text, justification in your answer or repeat Yes or No multiple times.",  # noqa: E501
                "For example, if the question is 'Is there a cat present in the Image?', the answer must only be 'Yes' or 'No'.",  # noqa: E501
            ]
            parsing_rule = "\n".join(parsing_rule)
            prompt = rf"Is there a {scene_description} present in the image? " f"[PARSING RULE]\n:{parsing_rule}"

            if seq_of_frames or video_path:
                response, confidence = self.infer_with_video_confidence(
                    language=prompt,
                    seq_of_frames=seq_of_frames,
                    video_path=video_path,
                )
            else:
                response, confidence = self.infer_with_image_confidence(language=prompt, image=frame_img)
            # TODO: Add a check for the response to be Yes or NO or clean up response better  # noqa: E501
            if "yes" in response.lower():
                detected = True
                if confidence <= threshold:
                    confidence = 0.0
                    detected = False

            else:
                detected = False
                confidence = 0.0

        return DetectedObject(
            name=scene_description,
            model_name=self.model_name,
            confidence=round(confidence, 3),
            probability=round(confidence, 3),
            number_of_detection=1,
            is_detected=detected,
        )

    def infer_with_image_confidence(
        self,
        language: str,
        image: np.ndarray | None = None,
        image_path: str | None = None,
        max_new_tokens: int = 1024,
        do_sample: bool = True,
    ) -> tuple[str, float]:
        """Perform image inference and return response with confidence score.

        Args:
            language (str): The input prompt or question.
            image (np.ndarray | None): The input image as a numpy array.
            image_path (str | None): Path to the input image file.
            max_new_tokens (int): Maximum number of new tokens to generate.
            do_sample (bool): Whether to use sampling for generation.

        Returns:
            tuple[str, float]: Generated response and confidence score.
        """
        if image_path:
            image = Image.open(image_path).convert("RGB")
        else:
            image = Image.fromarray(image)
        # set the max number of tiles in `max_num`
        pixel_values = load_image(image, max_num=12).to(torch.bfloat16).cuda(self.device)
        generation_config = {
            "max_new_tokens": max_new_tokens,
            "do_sample": do_sample,
        }
        image_prefix = "<image>\n"
        language = image_prefix + language

        return self.chat_with_confidence(self.tokenizer, pixel_values, language, generation_config)

    def chat_with_confidence(  # noqa: PLR0913
        self,
        tokenizer: AutoTokenizer,
        pixel_values: torch.Tensor,
        question: str,
        generation_config: dict,
        num_patches_list: list[int] | None = None,
        IMG_START_TOKEN: str = "<img>",  # noqa: N803, S107
        IMG_END_TOKEN: str = "</img>",  # noqa: N803, S107
        IMG_CONTEXT_TOKEN: str = "<IMG_CONTEXT>",  # noqa: N803, S107
        verbose: bool = False,
    ) -> tuple[str, float]:
        """Generate a response with confidence score for the given input.

        Args:
            tokenizer: The tokenizer to use.
            pixel_values: Image tensor input.
            question: The input question or prompt.
            generation_config: Configuration for text generation.
            num_patches_list: List of number of patches for video frames.
            IMG_START_TOKEN: Token to mark the start of an image.
            IMG_END_TOKEN: Token to mark the end of an image.
            IMG_CONTEXT_TOKEN: Token for image context.
            verbose: Whether to print verbose output.

        Returns:
            A tuple containing the generated response and its confidence score.
        """
        if num_patches_list is None:
            num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []

        assert pixel_values is None or len(pixel_values) == sum(num_patches_list)  # noqa: S101

        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.model.img_context_token_id = img_context_token_id

        template = self.model.conv_template
        template.system_message = self.model.system_message
        eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)

        template.append_message(template.roles[0], question)
        template.append_message(template.roles[1], None)
        query = template.get_prompt()

        if verbose and pixel_values is not None:
            image_bs = pixel_values.shape[0]
            print(f"dynamic ViT batch size: {image_bs}")  # noqa: T201

        for num_patches in num_patches_list:
            context_tokens = IMG_CONTEXT_TOKEN * self.model.num_image_token * num_patches
            image_tokens = IMG_START_TOKEN + context_tokens + IMG_END_TOKEN
            query = query.replace("<image>", image_tokens, 1)

        model_inputs = tokenizer(query, return_tensors="pt")
        input_ids = model_inputs["input_ids"].cuda(self.device)
        attention_mask = model_inputs["attention_mask"].cuda(self.device)
        generation_config["eos_token_id"] = eos_token_id
        generation_config["return_dict_in_generate"] = True
        generation_config["output_scores"] = True
        generation_config["output_logits"] = True
        generation_output = self.model.generate(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            **generation_config,
        )
        response = tokenizer.batch_decode(generation_output.sequences, skip_special_tokens=True)[0]
        response = response.split(template.sep)[0].strip()

        logits_to_compute = np.where(generation_output.sequences[0].detach().cpu().numpy() != eos_token_id)[0]
        confidence = 1.0
        for logit in logits_to_compute:
            token = generation_output.sequences[0, logit].item()
            prob = softmax(generation_output.logits[logit])[0, token]
            confidence = prob.item() * confidence
        self.clear_gpu_memory()
        return response, confidence

    def infer_with_video_confidence(
        self,
        language: str,
        seq_of_frames: list[np.ndarray] | None = None,
        video_path: str | None = None,
        max_new_tokens: int = 1024,
        do_sample: bool = True,
    ) -> tuple[str, float]:
        """Perform video inference and return response with confidence score.

        Args:
            language (str): The input prompt or question.
            seq_of_frames (list[np.ndarray] | None):
                List of video frames as numpy arrays.
            video_path (str | None): Path to the input video file.
            max_new_tokens (int): Maximum number of new tokens to generate.
            do_sample (bool): Whether to use sampling for generation.

        Returns:
            tuple[str, float]: Generated response and confidence score.
        """
        assert (  # noqa: S101
            seq_of_frames is not None or video_path is not None
        ), "One of 'seq_of_frames' or 'video_path' must be defined."

        generation_config = {
            "max_new_tokens": max_new_tokens,
            "do_sample": do_sample,
        }

        if video_path:
            pixel_values, num_patches_list = load_video_from_file(video_path, device=self.device)
        else:
            pixel_values, num_patches_list = load_video_from_seq_of_frames(
                seq_of_frames=seq_of_frames, device=self.device
            )

        video_prefix = "".join([f"Frame{i+1}: <image>\n" for i in range(len(num_patches_list))])
        language = video_prefix + language

        return self.chat_with_confidence(
            self.tokenizer,
            pixel_values,
            language,
            generation_config,
            num_patches_list=num_patches_list,
        )