File size: 9,189 Bytes
8d3e73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import math

import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode

from neus_v.video.read_video import read_video

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size: int) -> T.Compose:
    """Builds a transformation pipeline for the given input size."""
    mean, std = IMAGENET_MEAN, IMAGENET_STD
    return T.Compose(
        [
            T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
            T.Resize(
                (input_size, input_size),
                interpolation=InterpolationMode.BICUBIC,
            ),
            T.ToTensor(),
            T.Normalize(mean=mean, std=std),
        ]
    )


def assign_device_map(model_name, manual_gpu_id=0):
    device_map = {}
    world_size = torch.cuda.device_count()
    num_layers = {
        "InternVL2-1B": 24,
        "InternVL2-2B": 24,
        "InternVL2-4B": 32,
        "InternVL2-8B": 32,
        "InternVL2-26B": 48,
        "InternVL2-40B": 60,
        "InternVL2-Llama3-76B": 80,
    }[model_name]
    for layer_idx in range(num_layers):
        device_map[f"language_model.model.layers.{layer_idx}"] = manual_gpu_id

    device_map["vision_model"] = manual_gpu_id
    device_map["mlp1"] = manual_gpu_id
    device_map["language_model.model.tok_embeddings"] = manual_gpu_id
    device_map["language_model.model.embed_tokens"] = manual_gpu_id
    device_map["language_model.output"] = manual_gpu_id
    device_map["language_model.model.norm"] = manual_gpu_id
    device_map["language_model.lm_head"] = manual_gpu_id
    device_map[f"language_model.model.layers.{num_layers - 1}"] = manual_gpu_id

    return device_map


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float("inf")
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    # Convert numpy array to PIL Image if needed
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j)
        for n in range(min_num, max_num + 1)
        for i in range(1, n + 1)
        for j in range(1, n + 1)
        if i * j <= max_num and i * j >= min_num
    )
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size,
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image, input_size=448, max_num=12):
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


def split_model(model_name):
    device_map = {}
    world_size = torch.cuda.device_count()
    num_layers = {
        "InternVL2-1B": 24,
        "InternVL2-2B": 24,
        "InternVL2-4B": 32,
        "InternVL2-8B": 32,
        "InternVL2-26B": 48,
        "InternVL2-40B": 60,
        "InternVL2-Llama3-76B": 80,
    }[model_name]
    # Since the first GPU will be used for ViT, treat it as half a GPU.
    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f"language_model.model.layers.{layer_cnt}"] = i
            layer_cnt += 1
    device_map["vision_model"] = 0
    device_map["mlp1"] = 0
    device_map["language_model.model.tok_embeddings"] = 0
    device_map["language_model.model.embed_tokens"] = 0
    device_map["language_model.output"] = 0
    device_map["language_model.model.norm"] = 0
    device_map["language_model.lm_head"] = 0
    device_map[f"language_model.model.layers.{num_layers - 1}"] = 0

    return device_map


def move_tensors_to_gpu(module):
    for name, tensor in module.named_buffers():
        if isinstance(tensor, torch.Tensor) and tensor.device.type == "cpu":
            module.register_buffer(name, tensor.cuda(), persistent=False)
    for _, param in module.named_parameters():
        if param.device.type == "cpu":
            param.data = param.data.cuda()


# video multi-round conversation (视频多轮对话)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array(
        [int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)]
    )
    return frame_indices


def load_video_from_file(
    video_path: str, input_size=448, max_num=1, device="cuda", dtype=torch.bfloat16  # Add dtype parameter
):
    video = read_video(video_path)
    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    while True:
        img: np.ndarray = video.get_next_frame(
            return_format="pil",
            desired_interval_in_sec=1,
        )
        if img is None:
            break  # No more frames or end of video
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values.to(device))
    return torch.cat(pixel_values_list), num_patches_list


def load_video_from_seq_of_frames(
    seq_of_frames: list[np.ndarray],
    input_size=448,
    max_num=1,
    device="cuda",
    dtype=torch.bfloat16,  # Add dtype parameter
):
    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    for img in seq_of_frames:
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values).to(dtype=dtype, device=device)  # Convert to bfloat16
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    return torch.cat(pixel_values_list), num_patches_list


def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB")
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values.to(torch.bfloat16))
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list