import numpy as np class DataTransformer: def __init__(self, data): self.data = np.asarray(data) self.sorted_data = np.sort(self.data) self.n = len(self.sorted_data) self.ecdf = np.arange(1, self.n + 1) / self.n def mapping_function(self, x): x = np.asarray(x) return np.interp(x, self.sorted_data, self.ecdf, left=0, right=1) def smooth_confidence_scores(target_data, prior_distribution=None): # if prior_distribution is None: # prior_distribution = target_data # transformer = DataTransformer(prior_distribution) # return transformer.mapping_function(target_data) return target_data[0]