Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import gradio as gr | |
from mtcnn import MTCNN | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre | |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre | |
# Load models | |
xcp_model = load_model("xception_model.h5") | |
eff_model = load_model("efficientnet_model.h5") | |
# Load face detector | |
detector = MTCNN() | |
def expand_box(x, y, w, h, scale=1.5, img_shape=None): | |
"""Expand face bounding box with margin.""" | |
cx, cy = x + w // 2, y + h // 2 | |
new_w, new_h = int(w * scale), int(h * scale) | |
x1 = max(0, cx - new_w // 2) | |
y1 = max(0, cy - new_h // 2) | |
x2 = min(img_shape[1], cx + new_w // 2) | |
y2 = min(img_shape[0], cy + new_h // 2) | |
return x1, y1, x2, y2 | |
def predict(image): | |
faces = detector.detect_faces(image) | |
if not faces: | |
return "No faces detected", image | |
results = [] | |
annotated = image.copy() | |
for i, face in enumerate(faces): | |
x, y, w, h = face['box'] | |
x, y, w, h = max(0, x), max(0, y), w, h | |
x1, y1, x2, y2 = expand_box(x, y, w, h, scale=1.6, img_shape=image.shape) | |
face_crop = image[y1:y2, x1:x2] | |
# Preprocess for each model | |
xcp_img = cv2.resize(face_crop, (299, 299)) | |
eff_img = cv2.resize(face_crop, (224, 224)) | |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...] | |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...] | |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0] | |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0] | |
avg_pred = (xcp_pred + eff_pred) / 2 | |
label = "Real" if avg_pred > 0.5 else "Fake" | |
results.append( | |
f"Face {i+1}: {label} (Avg: {avg_pred:.3f}, XCP: {xcp_pred:.3f}, EFF: {eff_pred:.3f})" | |
) | |
# Draw | |
color = (0, 255, 0) if label == "Real" else (255, 0, 0) | |
cv2.rectangle(annotated, (x1, y1), (x2, y2), color, 2) | |
cv2.putText( | |
annotated, | |
f"{label} ({avg_pred:.2f})", | |
(x1, y1 - 10), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.6, | |
color, | |
2, | |
) | |
return "\n".join(results), annotated | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="numpy", label="Upload Image"), | |
outputs=[ | |
gr.Textbox(label="Predictions"), | |
gr.Image(type="numpy", label="Annotated Image"), | |
], | |
title="Deepfake Detector (Multi-Face Ensemble)", | |
description="Detects all faces in an image and classifies each one as real or fake using Xception and EfficientNetB4 ensemble.", | |
) | |
interface.launch() | |