Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +88 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
import tensorflow as tf
|
6 |
+
from mtcnn import MTCNN
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from tensorflow.keras.models import load_model
|
9 |
+
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
10 |
+
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
11 |
+
|
12 |
+
# ---------------------------------------------------------
|
13 |
+
# Load models from Hugging Face Hub
|
14 |
+
# ---------------------------------------------------------
|
15 |
+
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
|
16 |
+
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
|
17 |
+
xcp_model = load_model(xcp_path)
|
18 |
+
eff_model = load_model(eff_path)
|
19 |
+
|
20 |
+
# ---------------------------------------------------------
|
21 |
+
# Face Detection
|
22 |
+
# ---------------------------------------------------------
|
23 |
+
detector = MTCNN()
|
24 |
+
|
25 |
+
def extract_faces(image):
|
26 |
+
faces = detector.detect_faces(image)
|
27 |
+
if not faces:
|
28 |
+
return []
|
29 |
+
results = []
|
30 |
+
for i, face in enumerate(faces):
|
31 |
+
x, y, w, h = face['box']
|
32 |
+
x, y = max(0, x), max(0, y)
|
33 |
+
cropped = image[y:y+h, x:x+w]
|
34 |
+
if cropped.shape[0] >= 60 and cropped.shape[1] >= 60:
|
35 |
+
results.append((cropped, (x, y, w, h)))
|
36 |
+
return results
|
37 |
+
|
38 |
+
# ---------------------------------------------------------
|
39 |
+
# Inference Function
|
40 |
+
# ---------------------------------------------------------
|
41 |
+
def predict_faces(image):
|
42 |
+
faces = extract_faces(image)
|
43 |
+
if not faces:
|
44 |
+
return "No faces detected", None
|
45 |
+
|
46 |
+
annotated = image.copy()
|
47 |
+
results = []
|
48 |
+
|
49 |
+
for i, (face, (x, y, w, h)) in enumerate(faces):
|
50 |
+
# Preprocess
|
51 |
+
xcp_img = cv2.resize(face, (299, 299))
|
52 |
+
eff_img = cv2.resize(face, (224, 224))
|
53 |
+
|
54 |
+
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
55 |
+
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
56 |
+
|
57 |
+
# Predict
|
58 |
+
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
59 |
+
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
60 |
+
avg_pred = (xcp_pred + eff_pred) / 2
|
61 |
+
|
62 |
+
label = "Real" if avg_pred > 0.5 else "Fake"
|
63 |
+
confidence = f"{avg_pred:.2f}"
|
64 |
+
|
65 |
+
# Annotate
|
66 |
+
color = (0, 255, 0) if label == "Real" else (0, 0, 255)
|
67 |
+
cv2.rectangle(annotated, (x, y), (x + w, y + h), color, 2)
|
68 |
+
cv2.putText(annotated, f"{label} ({confidence})", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
|
69 |
+
|
70 |
+
results.append(f"Face {i+1}: {label} (Avg: {avg_pred:.3f}, XCP: {xcp_pred:.3f}, EFF: {eff_pred:.3f})")
|
71 |
+
|
72 |
+
return "\n".join(results), annotated
|
73 |
+
|
74 |
+
# ---------------------------------------------------------
|
75 |
+
# Gradio Interface
|
76 |
+
# ---------------------------------------------------------
|
77 |
+
interface = gr.Interface(
|
78 |
+
fn=predict_faces,
|
79 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
80 |
+
outputs=[
|
81 |
+
gr.Textbox(label="Predictions"),
|
82 |
+
gr.Image(type="numpy", label="Annotated Image")
|
83 |
+
],
|
84 |
+
title="Deepfake Detector (Multi-Face Ensemble)",
|
85 |
+
description="This model detects all faces in an image and classifies each one as real or fake using Xception and EfficientNetB4 ensemble."
|
86 |
+
)
|
87 |
+
|
88 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow>=2.9.0
|
2 |
+
mtcnn
|
3 |
+
opencv-python
|
4 |
+
numpy
|
5 |
+
pandas
|
6 |
+
gradio
|
7 |
+
huggingface_hub
|