Zeyadd-Mostaffa commited on
Commit
d888b34
·
verified ·
1 Parent(s): 7d8ff14

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -65
app.py CHANGED
@@ -1,89 +1,63 @@
1
- import cv2
2
  import numpy as np
3
- import gradio as gr
4
  from mtcnn import MTCNN
 
5
  from tensorflow.keras.models import load_model
6
  from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
7
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
 
8
  from huggingface_hub import hf_hub_download
9
 
10
-
11
  # Load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
13
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
14
- xcp_model = load_model(xcp_path)
15
- eff_model = load_model(eff_path)
16
 
 
 
17
 
18
- # Load face detector
19
  detector = MTCNN()
20
 
21
- def expand_box(x, y, w, h, scale=1.5, img_shape=None):
22
- """Expand face bounding box with margin."""
23
- cx, cy = x + w // 2, y + h // 2
24
- new_w, new_h = int(w * scale), int(h * scale)
25
- x1 = max(0, cx - new_w // 2)
26
- y1 = max(0, cy - new_h // 2)
27
- x2 = min(img_shape[1], cx + new_w // 2)
28
- y2 = min(img_shape[0], cy + new_h // 2)
29
- return x1, y1, x2, y2
30
-
31
- def predict(image):
32
- faces = detector.detect_faces(image)
33
- if not faces:
34
- return "No face detected", image
35
 
36
- output_image = image.copy()
37
  results = []
 
38
 
39
- for idx, face in enumerate(faces):
40
- x, y, w, h = face['box']
41
-
42
- # Add 20% margin while staying inside bounds
43
- margin = 0.2
44
- img_h, img_w = image.shape[:2]
45
- x = max(0, int(x - w * margin))
46
- y = max(0, int(y - h * margin))
47
- w = int(w * (1 + 2 * margin))
48
- h = int(h * (1 + 2 * margin))
49
- x2 = min(img_w, x + w)
50
- y2 = min(img_h, y + h)
51
-
52
- face_img = image[y:y2, x:x2]
53
-
54
- # Resize + preprocess
55
- face_xcp = cv2.resize(face_img, (299, 299))
56
- face_eff = cv2.resize(face_img, (224, 224))
57
- xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...]
58
- eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...]
59
 
60
- # Predictions
61
- pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
62
- pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
63
- avg = (pred_xcp + pred_eff) / 2
64
 
65
- label = "Real" if avg > 0.5 else "Fake"
66
- color = (0, 255, 0) if label == "Real" else (0, 0, 255)
 
 
 
 
67
 
68
- # Annotate image
69
- cv2.rectangle(output_image, (x, y), (x2, y2), color, 2)
70
- cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10),
71
- cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
72
 
73
- results.append(f"Face {idx+1}: {label} (Avg: {avg:.3f}, XCP: {pred_xcp:.3f}, EFF: {pred_eff:.3f})")
 
 
74
 
75
- return "\n".join(results), output_image
 
 
 
76
 
77
- # Gradio Interface
78
- interface = gr.Interface(
79
- fn=predict,
80
- inputs=gr.Image(type="numpy", label="Upload Image"),
81
- outputs=[
82
- gr.Textbox(label="Predictions"),
83
- gr.Image(type="numpy", label="Annotated Image"),
84
- ],
85
- title="Deepfake Detector (Multi-Face Ensemble)",
86
- description="Detects all faces in an image and classifies each one as real or fake using Xception and EfficientNetB4 ensemble.",
87
- )
88
 
89
- interface.launch()
 
1
+ import os
2
  import numpy as np
3
+ import cv2
4
  from mtcnn import MTCNN
5
+ from PIL import Image
6
  from tensorflow.keras.models import load_model
7
  from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
+ from tensorflow.keras.preprocessing.image import img_to_array
10
  from huggingface_hub import hf_hub_download
11
 
 
12
  # Load models
13
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
14
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
 
 
15
 
16
+ model_xcp = load_model(xcp_path)
17
+ model_eff = load_model(eff_path)
18
 
19
+ # Face detector
20
  detector = MTCNN()
21
 
22
+ # Prediction function
23
+ def predict_image(image_path):
24
+ img = cv2.imread(image_path)
25
+ if img is None:
26
+ return {"error": "Image could not be loaded"}
 
 
 
 
 
 
 
 
 
27
 
 
28
  results = []
29
+ faces = detector.detect_faces(img)
30
 
31
+ # === Single or no face ===
32
+ if len(faces) <= 1:
33
+ img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
34
+ img_xcp = xcp_pre(np.expand_dims(cv2.resize(img_rgb, (299, 299)), axis=0))
35
+ img_eff = eff_pre(np.expand_dims(cv2.resize(img_rgb, (224, 224)), axis=0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ xcp_pred = model_xcp.predict(img_xcp)[0][0]
38
+ eff_pred = model_eff.predict(img_eff)[0][0]
39
+ final_score = (xcp_pred + eff_pred) / 2
40
+ label = "REAL" if final_score > 0.5 else "FAKE"
41
 
42
+ results.append({"face_id": "whole image", "label": label, "score": round(float(final_score), 3)})
43
+ else:
44
+ for idx, face in enumerate(faces):
45
+ x, y, w, h = face['box']
46
+ x, y = max(0, x), max(0, y)
47
+ cropped = img[y:y+h, x:x+w]
48
 
49
+ if cropped.shape[0] < 60 or cropped.shape[1] < 60:
50
+ continue
 
 
51
 
52
+ face_rgb = cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)
53
+ img_xcp = xcp_pre(np.expand_dims(cv2.resize(face_rgb, (299, 299)), axis=0))
54
+ img_eff = eff_pre(np.expand_dims(cv2.resize(face_rgb, (224, 224)), axis=0))
55
 
56
+ xcp_pred = model_xcp.predict(img_xcp)[0][0]
57
+ eff_pred = model_eff.predict(img_eff)[0][0]
58
+ final_score = (xcp_pred + eff_pred) / 2
59
+ label = "REAL" if final_score > 0.5 else "FAKE"
60
 
61
+ results.append({"face_id": f"face_{idx+1}", "label": label, "score": round(float(final_score), 3)})
 
 
 
 
 
 
 
 
 
 
62
 
63
+ return results