Zeyadd-Mostaffa commited on
Commit
da7f914
·
verified ·
1 Parent(s): b5fa44d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -40
app.py CHANGED
@@ -7,74 +7,74 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
7
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
8
  from huggingface_hub import hf_hub_download
9
 
10
-
11
- # Load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
13
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
17
-
18
- # Load face detector
19
  detector = MTCNN()
20
 
21
- def expand_box(x, y, w, h, scale=1.5, img_shape=None):
22
- """Expand face bounding box with margin."""
23
- cx, cy = x + w // 2, y + h // 2
24
- new_w, new_h = int(w * scale), int(h * scale)
25
- x1 = max(0, cx - new_w // 2)
26
- y1 = max(0, cy - new_h // 2)
27
- x2 = min(img_shape[1], cx + new_w // 2)
28
- y2 = min(img_shape[0], cy + new_h // 2)
29
- return x1, y1, x2, y2
30
 
31
  def predict(image):
32
  faces = detector.detect_faces(image)
33
  if not faces:
34
  return "No face detected", image
35
 
36
- output_image = image.copy()
37
  results = []
38
 
39
  for idx, face in enumerate(faces):
 
 
 
40
  x, y, w, h = face['box']
 
 
41
 
42
- # Add 20% margin while staying inside bounds
43
  margin = 0.2
44
  img_h, img_w = image.shape[:2]
45
  x = max(0, int(x - w * margin))
46
  y = max(0, int(y - h * margin))
47
- w = int(w * (1 + 2 * margin))
48
- h = int(h * (1 + 2 * margin))
49
- x2 = min(img_w, x + w)
50
- y2 = min(img_h, y + h)
51
-
52
- face_img = image[y:y2, x:x2]
53
-
54
- # Resize + preprocess
55
- face_xcp = cv2.resize(face_img, (299, 299))
56
- face_eff = cv2.resize(face_img, (224, 224))
57
- xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...]
58
- eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...]
59
-
60
- # Predictions
61
- pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
62
- pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
63
- avg = (pred_xcp + pred_eff) / 2
64
-
65
- label = "Real" if avg > 0.41 else "Fake"
66
  color = (0, 255, 0) if label == "Real" else (0, 0, 255)
67
 
68
  # Annotate image
69
- cv2.rectangle(output_image, (x, y), (x2, y2), color, 2)
70
- cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10),
71
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
72
 
73
- results.append(f"Face {idx+1}: {label} (Avg: {avg:.3f}, XCP: {pred_xcp:.3f}, EFF: {pred_eff:.3f})")
74
 
75
- return "\n".join(results), output_image
 
76
 
77
- # Gradio Interface
 
 
78
  interface = gr.Interface(
79
  fn=predict,
80
  inputs=gr.Image(type="numpy", label="Upload Image"),
@@ -83,7 +83,8 @@ interface = gr.Interface(
83
  gr.Image(type="numpy", label="Annotated Image"),
84
  ],
85
  title="Deepfake Detector (Multi-Face Ensemble)",
86
- description="Detects all faces in an image and classifies each one as real or fake using Xception and EfficientNetB4 ensemble.",
87
  )
88
 
89
  interface.launch()
 
 
7
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
8
  from huggingface_hub import hf_hub_download
9
 
10
+ # Download models from Hugging Face
 
11
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
12
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
13
  xcp_model = load_model(xcp_path)
14
  eff_model = load_model(eff_path)
15
 
16
+ # Load MTCNN detector
 
17
  detector = MTCNN()
18
 
19
+ # Parameters
20
+ MIN_FACE_SIZE = 100 # Skip small distant faces
21
+ MIN_CONFIDENCE = 0.97 # MTCNN face confidence
22
+ AVG_THRESHOLD = 0.41 # Decision boundary
 
 
 
 
 
23
 
24
  def predict(image):
25
  faces = detector.detect_faces(image)
26
  if not faces:
27
  return "No face detected", image
28
 
29
+ output = image.copy()
30
  results = []
31
 
32
  for idx, face in enumerate(faces):
33
+ if face['confidence'] < MIN_CONFIDENCE:
34
+ continue
35
+
36
  x, y, w, h = face['box']
37
+ if w < MIN_FACE_SIZE or h < MIN_FACE_SIZE:
38
+ continue
39
 
40
+ # Expand face bounding box by margin
41
  margin = 0.2
42
  img_h, img_w = image.shape[:2]
43
  x = max(0, int(x - w * margin))
44
  y = max(0, int(y - h * margin))
45
+ x2 = min(img_w, int(x + w * (1 + 2 * margin)))
46
+ y2 = min(img_h, int(y + h * (1 + 2 * margin)))
47
+
48
+ face_crop = image[y:y2, x:x2]
49
+ if face_crop.size == 0:
50
+ continue
51
+
52
+ # Resize and preprocess for both models
53
+ xcp_input = cv2.resize(face_crop, (299, 299)).astype(np.float32)
54
+ eff_input = cv2.resize(face_crop, (224, 224)).astype(np.float32)
55
+ xcp_tensor = xcp_pre(xcp_input)[np.newaxis, ...]
56
+ eff_tensor = eff_pre(eff_input)[np.newaxis, ...]
57
+
58
+ # Get predictions
59
+ xcp_score = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
60
+ eff_score = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
61
+ avg_score = (xcp_score + eff_score) / 2
62
+ label = "Real" if avg_score > AVG_THRESHOLD else "Fake"
 
63
  color = (0, 255, 0) if label == "Real" else (0, 0, 255)
64
 
65
  # Annotate image
66
+ cv2.rectangle(output, (x, y), (x2, y2), color, 2)
67
+ cv2.putText(output, f"{label} ({avg_score:.2f})", (x, y - 10),
68
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
69
 
70
+ results.append(f"Face {idx+1}: {label} (Avg: {avg_score:.3f}, XCP: {xcp_score:.3f}, EFF: {eff_score:.3f})")
71
 
72
+ if not results:
73
+ return "No clear or confident face detected", image
74
 
75
+ return "\n".join(results), output
76
+
77
+ # Gradio UI
78
  interface = gr.Interface(
79
  fn=predict,
80
  inputs=gr.Image(type="numpy", label="Upload Image"),
 
83
  gr.Image(type="numpy", label="Annotated Image"),
84
  ],
85
  title="Deepfake Detector (Multi-Face Ensemble)",
86
+ description="Detects and classifies confident faces as Real or Fake using Xception + EfficientNetB4.",
87
  )
88
 
89
  interface.launch()
90
+