Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,89 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
import cv2
|
|
|
|
|
4 |
from mtcnn import MTCNN
|
5 |
-
from PIL import Image
|
6 |
from tensorflow.keras.models import load_model
|
7 |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
8 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
9 |
-
from tensorflow.keras.preprocessing.image import img_to_array
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
-
|
12 |
|
13 |
# Load models
|
14 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
|
15 |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
|
|
|
|
|
16 |
|
17 |
-
model_xcp = load_model(xcp_path)
|
18 |
-
model_eff = load_model(eff_path)
|
19 |
|
20 |
-
#
|
21 |
detector = MTCNN()
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
29 |
results = []
|
30 |
-
faces = detector.detect_faces(img)
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
eff_pred = model_eff.predict(img_eff)[0][0]
|
40 |
-
final_score = (xcp_pred + eff_pred) / 2
|
41 |
-
label = "REAL" if final_score > 0.5 else "FAKE"
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
cropped = img[y:y+h, x:x+w]
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
img_eff = eff_pre(np.expand_dims(cv2.resize(face_rgb, (224, 224)), axis=0))
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
64 |
-
return results
|
65 |
|
|
|
66 |
interface = gr.Interface(
|
67 |
-
fn=
|
68 |
-
inputs=gr.Image(type="
|
69 |
-
outputs=
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
)
|
73 |
|
74 |
-
# ✅ Required to start app
|
75 |
interface.launch()
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
from mtcnn import MTCNN
|
|
|
5 |
from tensorflow.keras.models import load_model
|
6 |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
7 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
|
11 |
# Load models
|
12 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
|
13 |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
|
14 |
+
xcp_model = load_model(xcp_path)
|
15 |
+
eff_model = load_model(eff_path)
|
16 |
|
|
|
|
|
17 |
|
18 |
+
# Load face detector
|
19 |
detector = MTCNN()
|
20 |
|
21 |
+
def expand_box(x, y, w, h, scale=1.5, img_shape=None):
|
22 |
+
"""Expand face bounding box with margin."""
|
23 |
+
cx, cy = x + w // 2, y + h // 2
|
24 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
25 |
+
x1 = max(0, cx - new_w // 2)
|
26 |
+
y1 = max(0, cy - new_h // 2)
|
27 |
+
x2 = min(img_shape[1], cx + new_w // 2)
|
28 |
+
y2 = min(img_shape[0], cy + new_h // 2)
|
29 |
+
return x1, y1, x2, y2
|
30 |
+
|
31 |
+
def predict(image):
|
32 |
+
faces = detector.detect_faces(image)
|
33 |
+
if not faces:
|
34 |
+
return "No face detected", image
|
35 |
|
36 |
+
output_image = image.copy()
|
37 |
results = []
|
|
|
38 |
|
39 |
+
for idx, face in enumerate(faces):
|
40 |
+
x, y, w, h = face['box']
|
41 |
+
|
42 |
+
# Add 20% margin while staying inside bounds
|
43 |
+
margin = 0.2
|
44 |
+
img_h, img_w = image.shape[:2]
|
45 |
+
x = max(0, int(x - w * margin))
|
46 |
+
y = max(0, int(y - h * margin))
|
47 |
+
w = int(w * (1 + 2 * margin))
|
48 |
+
h = int(h * (1 + 2 * margin))
|
49 |
+
x2 = min(img_w, x + w)
|
50 |
+
y2 = min(img_h, y + h)
|
51 |
|
52 |
+
face_img = image[y:y2, x:x2]
|
|
|
|
|
|
|
53 |
|
54 |
+
# Resize + preprocess
|
55 |
+
face_xcp = cv2.resize(face_img, (299, 299))
|
56 |
+
face_eff = cv2.resize(face_img, (224, 224))
|
57 |
+
xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...]
|
58 |
+
eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...]
|
|
|
59 |
|
60 |
+
# Predictions
|
61 |
+
pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
62 |
+
pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
63 |
+
avg = (pred_xcp + pred_eff) / 2
|
64 |
|
65 |
+
label = "Real" if avg > 0.5 else "Fake"
|
66 |
+
color = (0, 255, 0) if label == "Real" else (0, 0, 255)
|
|
|
67 |
|
68 |
+
# Annotate image
|
69 |
+
cv2.rectangle(output_image, (x, y), (x2, y2), color, 2)
|
70 |
+
cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10),
|
71 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
72 |
|
73 |
+
results.append(f"Face {idx+1}: {label} (Avg: {avg:.3f}, XCP: {pred_xcp:.3f}, EFF: {pred_eff:.3f})")
|
74 |
|
75 |
+
return "\n".join(results), output_image
|
76 |
|
77 |
+
# Gradio Interface
|
78 |
interface = gr.Interface(
|
79 |
+
fn=predict,
|
80 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
81 |
+
outputs=[
|
82 |
+
gr.Textbox(label="Predictions"),
|
83 |
+
gr.Image(type="numpy", label="Annotated Image"),
|
84 |
+
],
|
85 |
+
title="Deepfake Detector (Multi-Face Ensemble)",
|
86 |
+
description="Detects all faces in an image and classifies each one as real or fake using Xception and EfficientNetB4 ensemble.",
|
87 |
)
|
88 |
|
|
|
89 |
interface.launch()
|