import cv2 import numpy as np import gradio as gr from mtcnn import MTCNN from tensorflow.keras.models import load_model from tensorflow.keras.applications.xception import preprocess_input as xcp_pre from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre from huggingface_hub import hf_hub_download # Load models xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5") eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5") xcp_model = load_model(xcp_path) eff_model = load_model(eff_path) # Load face detector detector = MTCNN() def expand_box(x, y, w, h, scale=1.5, img_shape=None): """Expand face bounding box with margin.""" cx, cy = x + w // 2, y + h // 2 new_w, new_h = int(w * scale), int(h * scale) x1 = max(0, cx - new_w // 2) y1 = max(0, cy - new_h // 2) x2 = min(img_shape[1], cx + new_w // 2) y2 = min(img_shape[0], cy + new_h // 2) return x1, y1, x2, y2 def predict(image): faces = detector.detect_faces(image) if not faces: return "No face detected", image output_image = image.copy() results = [] for idx, face in enumerate(faces): x, y, w, h = face['box'] # Add 20% margin while staying inside bounds margin = 0.2 img_h, img_w = image.shape[:2] x = max(0, int(x - w * margin)) y = max(0, int(y - h * margin)) w = int(w * (1 + 2 * margin)) h = int(h * (1 + 2 * margin)) x2 = min(img_w, x + w) y2 = min(img_h, y + h) face_img = image[y:y2, x:x2] # Resize + preprocess face_xcp = cv2.resize(face_img, (299, 299)) face_eff = cv2.resize(face_img, (224, 224)) xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...] eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...] # Predictions pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0] pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0] avg = (pred_xcp + pred_eff) / 2 # Real confidence if avg > 0.41: label = "Real" confidence = avg color = (0, 255, 0) else: label = "Fake" confidence = 1 - avg # Confidence in Fake color = (0, 0, 255) # Annotate image with percentage confidence cv2.rectangle(output_image, (x, y), (x2, y2), color, 2) cv2.putText(output_image, f"{label} ({confidence * 100:.2f}%)", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) # Save results results.append( f"Face {idx+1}: {label} (Confidence: {confidence * 100:.2f}%, Avg Real: {avg * 100:.2f}%, XCP: {pred_xcp * 100:.2f}%, EFF: {pred_eff * 100:.2f}%)" ) return "\n".join(results), output_image # Gradio Interface interface = gr.Interface( fn=predict, inputs=gr.Image(type="numpy", label="Upload Image"), outputs=[ gr.Textbox(label="Predictions"), gr.Image(type="numpy", label="Annotated Image"), ], title="Deepfake Detector (Multi-Face Ensemble)", description="Detects all faces in an image and classifies each one as real or fake using Xception and EfficientNetB4 ensemble.", ) interface.launch()