File size: 9,296 Bytes
6f024ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0029066
6f024ab
 
 
 
0029066
6f024ab
 
 
 
 
54abc85
6f024ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/env python3
# Copyright         2025  Xiaomi Corp.        (authors: Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This script generates speech with our pre-trained ZipVoice or
    ZipVoice-Distill models. If no local model is specified,
    Required files will be automatically downloaded from HuggingFace.

Usage:

Note: If you having trouble connecting to HuggingFace,
    try switching endpoint to mirror site:
export HF_ENDPOINT=https://hf-mirror.com

(1) Inference of a single sentence:

python3 -m zipvoice.bin.infer_zipvoice \
    --model-name "zipvoice" \
    --prompt-wav prompt.wav \
    --prompt-text "I am a prompt." \
    --text "I am a sentence." \
    --res-wav-path result.wav

(2) Inference of a list of sentences:

python3 -m zipvoice.bin.infer_zipvoice \
    --model-name "zipvoice" \
    --test-list test.tsv \
    --res-dir results

`--model-name` can be `zipvoice` or `zipvoice_distill`,
    which are the models before and after distillation, respectively.

Each line of `test.tsv` is in the format of
    `{wav_name}\t{prompt_transcription}\t{prompt_wav}\t{text}`.
"""

import argparse
import datetime as dt
import json
import os
from typing import Optional

import numpy as np
import safetensors.torch
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from lhotse.utils import fix_random_seed
from vocos import Vocos

from zipvoice.models.zipvoice import ZipVoice
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
from zipvoice.tokenizer.tokenizer import (
    EmiliaTokenizer,
    EspeakTokenizer,
    LibriTTSTokenizer,
    SimpleTokenizer,
)
from zipvoice.utils.checkpoint import load_checkpoint
from zipvoice.utils.common import AttributeDict
from zipvoice.utils.feature import VocosFbank

HUGGINGFACE_REPO = "k2-fsa/ZipVoice"
PRETRAINED_MODEL = {
    "zipvoice": "zipvoice/model.pt",
    "zipvoice_distill": "zipvoice_distill/model.pt",
}
TOKEN_FILE = {
    "zipvoice": "zipvoice/tokens.txt",
    "zipvoice_distill": "zipvoice_distill/tokens.txt",
}
MODEL_CONFIG = {
    "zipvoice": "zipvoice/zipvoice_base.json",
    "zipvoice_distill": "zipvoice_distill/zipvoice_base.json",
}

torch.set_num_threads(1)
torch.set_num_interop_threads(1)

def get_vocoder(vocos_local_path: Optional[str] = None):
    if vocos_local_path:
        vocoder = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
        state_dict = torch.load(
            f"{vocos_local_path}/pytorch_model.bin",
            weights_only=True,
            map_location="cpu",
        )
        vocoder.load_state_dict(state_dict)
    else:
        vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz")
    return vocoder


def generate_sentence(
    prompt_text: str,
    prompt_wav: str,
    text: str,
    model: torch.nn.Module,
    vocoder: torch.nn.Module,
    tokenizer: EmiliaTokenizer,
    feature_extractor: VocosFbank,
    device: torch.device,
    num_step: int = 16,
    guidance_scale: float = 1.0,
    speed: float = 1.0,
    t_shift: float = 0.5,
    target_rms: float = 0.1,
    feat_scale: float = 0.1,
    sampling_rate: int = 24000,
):
    """
    Generate waveform of a text based on a given prompt
        waveform and its transcription.

    Args:
        save_path (str): Path to save the generated wav.
        prompt_text (str): Transcription of the prompt wav.
        prompt_wav (str): Path to the prompt wav file.
        text (str): Text to be synthesized into a waveform.
        model (torch.nn.Module): The model used for generation.
        vocoder (torch.nn.Module): The vocoder used to convert features to waveforms.
        tokenizer (EmiliaTokenizer): The tokenizer used to convert text to tokens.
        feature_extractor (VocosFbank): The feature extractor used to
            extract acoustic features.
        device (torch.device): The device on which computations are performed.
        num_step (int, optional): Number of steps for decoding. Defaults to 16.
        guidance_scale (float, optional): Scale for classifier-free guidance.
            Defaults to 1.0.
        speed (float, optional): Speed control. Defaults to 1.0.
        t_shift (float, optional): Time shift. Defaults to 0.5.
        target_rms (float, optional): Target RMS for waveform normalization.
            Defaults to 0.1.
        feat_scale (float, optional): Scale for features.
            Defaults to 0.1.
        sampling_rate (int, optional): Sampling rate for the waveform.
            Defaults to 24000.
    Returns:
        metrics (dict): Dictionary containing time and real-time
            factor metrics for processing.
    """
    # Convert text to tokens
    tokens = tokenizer.texts_to_token_ids([text])
    prompt_tokens = tokenizer.texts_to_token_ids([prompt_text])

    # Load and preprocess prompt wav
    prompt_wav, prompt_sampling_rate = torchaudio.load(prompt_wav)

    if prompt_sampling_rate != sampling_rate:
        resampler = torchaudio.transforms.Resample(
            orig_freq=prompt_sampling_rate, new_freq=sampling_rate
        )
        prompt_wav = resampler(prompt_wav)

    prompt_rms = torch.sqrt(torch.mean(torch.square(prompt_wav)))
    if prompt_rms < target_rms:
        prompt_wav = prompt_wav * target_rms / prompt_rms

    # Extract features from prompt wav
    prompt_features = feature_extractor.extract(
        prompt_wav, sampling_rate=sampling_rate
    ).to(device)

    prompt_features = prompt_features.unsqueeze(0) * feat_scale
    prompt_features_lens = torch.tensor([prompt_features.size(1)], device=device)

    # Start timing
    start_t = dt.datetime.now()

    # Generate features
    (
        pred_features,
        pred_features_lens,
        pred_prompt_features,
        pred_prompt_features_lens,
    ) = model.sample(
        tokens=tokens,
        prompt_tokens=prompt_tokens,
        prompt_features=prompt_features,
        prompt_features_lens=prompt_features_lens,
        speed=speed,
        t_shift=t_shift,
        duration="predict",
        num_step=num_step,
        guidance_scale=guidance_scale,
    )

    # Postprocess predicted features
    pred_features = pred_features.permute(0, 2, 1) / feat_scale  # (B, C, T)

    # Start vocoder processing
    start_vocoder_t = dt.datetime.now()
    wav = vocoder.decode(pred_features).squeeze(1).clamp(-1, 1)

    # Calculate processing times and real-time factors
    t = (dt.datetime.now() - start_t).total_seconds()
    t_no_vocoder = (start_vocoder_t - start_t).total_seconds()
    t_vocoder = (dt.datetime.now() - start_vocoder_t).total_seconds()
    wav_seconds = wav.shape[-1] / sampling_rate
    rtf = t / wav_seconds
    rtf_no_vocoder = t_no_vocoder / wav_seconds
    rtf_vocoder = t_vocoder / wav_seconds
    # metrics = {
    #     "t": t,
    #     "t_no_vocoder": t_no_vocoder,
    #     "t_vocoder": t_vocoder,
    #     "wav_seconds": wav_seconds,
    #     "rtf": rtf,
    #     "rtf_no_vocoder": rtf_no_vocoder,
    #     "rtf_vocoder": rtf_vocoder,
    # }

    # Adjust wav volume if necessary
    if prompt_rms < target_rms:
        wav = wav * prompt_rms / target_rms
    # torchaudio.save(save_path, wav.cpu(), sample_rate=sampling_rate)
    # return metrics
    return wav.cpu()

model_defaults = {
    "zipvoice": {
        "num_step": 16,
        "guidance_scale": 1.0,
    },
    "zipvoice_distill": {
        "num_step": 8,
        "guidance_scale": 3.0,
    },
}

device = torch.device("cuda", 0)

print("Loading model...")
model_config = "config.json"

with open(model_config, "r") as f:
    model_config = json.load(f)

token_file = "tokens.txt"

tokenizer = EspeakTokenizer(token_file=token_file, lang="vi")

tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id}

model_ckpt = "iter-96000-avg-2.pt"

model = ZipVoice(
    **model_config["model"],
    **tokenizer_config,
)

load_checkpoint(filename=model_ckpt, model=model, strict=True)

model = model.to(device)
model.eval()

vocoder = get_vocoder(None)
vocoder = vocoder.to(device)
vocoder.eval()

if model_config["feature"]["type"] == "vocos":
    feature_extractor = VocosFbank()
else:
    raise NotImplementedError(
        f"Unsupported feature type: {model_config['feature']['type']}"
    )
sampling_rate = model_config["feature"]["sampling_rate"]

# generate_sentence(
#     save_path=res_wav_path,
#     prompt_text=prompt_text,
#     prompt_wav=prompt_wav,
#     text=text,
#     model=model,
#     vocoder=vocoder,
#     tokenizer=tokenizer,
#     feature_extractor=feature_extractor,
#     device=device,
#     num_step=16,
#     guidance_scale=1.0,
#     speed=speed,
#     t_shift=0.5,
#     target_rms=0.1,
#     feat_scale=0.1,
#     sampling_rate=sampling_rate,
# )

# print("Done")