File size: 9,296 Bytes
6f024ab 0029066 6f024ab 0029066 6f024ab 54abc85 6f024ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script generates speech with our pre-trained ZipVoice or
ZipVoice-Distill models. If no local model is specified,
Required files will be automatically downloaded from HuggingFace.
Usage:
Note: If you having trouble connecting to HuggingFace,
try switching endpoint to mirror site:
export HF_ENDPOINT=https://hf-mirror.com
(1) Inference of a single sentence:
python3 -m zipvoice.bin.infer_zipvoice \
--model-name "zipvoice" \
--prompt-wav prompt.wav \
--prompt-text "I am a prompt." \
--text "I am a sentence." \
--res-wav-path result.wav
(2) Inference of a list of sentences:
python3 -m zipvoice.bin.infer_zipvoice \
--model-name "zipvoice" \
--test-list test.tsv \
--res-dir results
`--model-name` can be `zipvoice` or `zipvoice_distill`,
which are the models before and after distillation, respectively.
Each line of `test.tsv` is in the format of
`{wav_name}\t{prompt_transcription}\t{prompt_wav}\t{text}`.
"""
import argparse
import datetime as dt
import json
import os
from typing import Optional
import numpy as np
import safetensors.torch
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from lhotse.utils import fix_random_seed
from vocos import Vocos
from zipvoice.models.zipvoice import ZipVoice
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
from zipvoice.tokenizer.tokenizer import (
EmiliaTokenizer,
EspeakTokenizer,
LibriTTSTokenizer,
SimpleTokenizer,
)
from zipvoice.utils.checkpoint import load_checkpoint
from zipvoice.utils.common import AttributeDict
from zipvoice.utils.feature import VocosFbank
HUGGINGFACE_REPO = "k2-fsa/ZipVoice"
PRETRAINED_MODEL = {
"zipvoice": "zipvoice/model.pt",
"zipvoice_distill": "zipvoice_distill/model.pt",
}
TOKEN_FILE = {
"zipvoice": "zipvoice/tokens.txt",
"zipvoice_distill": "zipvoice_distill/tokens.txt",
}
MODEL_CONFIG = {
"zipvoice": "zipvoice/zipvoice_base.json",
"zipvoice_distill": "zipvoice_distill/zipvoice_base.json",
}
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_vocoder(vocos_local_path: Optional[str] = None):
if vocos_local_path:
vocoder = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
state_dict = torch.load(
f"{vocos_local_path}/pytorch_model.bin",
weights_only=True,
map_location="cpu",
)
vocoder.load_state_dict(state_dict)
else:
vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz")
return vocoder
def generate_sentence(
prompt_text: str,
prompt_wav: str,
text: str,
model: torch.nn.Module,
vocoder: torch.nn.Module,
tokenizer: EmiliaTokenizer,
feature_extractor: VocosFbank,
device: torch.device,
num_step: int = 16,
guidance_scale: float = 1.0,
speed: float = 1.0,
t_shift: float = 0.5,
target_rms: float = 0.1,
feat_scale: float = 0.1,
sampling_rate: int = 24000,
):
"""
Generate waveform of a text based on a given prompt
waveform and its transcription.
Args:
save_path (str): Path to save the generated wav.
prompt_text (str): Transcription of the prompt wav.
prompt_wav (str): Path to the prompt wav file.
text (str): Text to be synthesized into a waveform.
model (torch.nn.Module): The model used for generation.
vocoder (torch.nn.Module): The vocoder used to convert features to waveforms.
tokenizer (EmiliaTokenizer): The tokenizer used to convert text to tokens.
feature_extractor (VocosFbank): The feature extractor used to
extract acoustic features.
device (torch.device): The device on which computations are performed.
num_step (int, optional): Number of steps for decoding. Defaults to 16.
guidance_scale (float, optional): Scale for classifier-free guidance.
Defaults to 1.0.
speed (float, optional): Speed control. Defaults to 1.0.
t_shift (float, optional): Time shift. Defaults to 0.5.
target_rms (float, optional): Target RMS for waveform normalization.
Defaults to 0.1.
feat_scale (float, optional): Scale for features.
Defaults to 0.1.
sampling_rate (int, optional): Sampling rate for the waveform.
Defaults to 24000.
Returns:
metrics (dict): Dictionary containing time and real-time
factor metrics for processing.
"""
# Convert text to tokens
tokens = tokenizer.texts_to_token_ids([text])
prompt_tokens = tokenizer.texts_to_token_ids([prompt_text])
# Load and preprocess prompt wav
prompt_wav, prompt_sampling_rate = torchaudio.load(prompt_wav)
if prompt_sampling_rate != sampling_rate:
resampler = torchaudio.transforms.Resample(
orig_freq=prompt_sampling_rate, new_freq=sampling_rate
)
prompt_wav = resampler(prompt_wav)
prompt_rms = torch.sqrt(torch.mean(torch.square(prompt_wav)))
if prompt_rms < target_rms:
prompt_wav = prompt_wav * target_rms / prompt_rms
# Extract features from prompt wav
prompt_features = feature_extractor.extract(
prompt_wav, sampling_rate=sampling_rate
).to(device)
prompt_features = prompt_features.unsqueeze(0) * feat_scale
prompt_features_lens = torch.tensor([prompt_features.size(1)], device=device)
# Start timing
start_t = dt.datetime.now()
# Generate features
(
pred_features,
pred_features_lens,
pred_prompt_features,
pred_prompt_features_lens,
) = model.sample(
tokens=tokens,
prompt_tokens=prompt_tokens,
prompt_features=prompt_features,
prompt_features_lens=prompt_features_lens,
speed=speed,
t_shift=t_shift,
duration="predict",
num_step=num_step,
guidance_scale=guidance_scale,
)
# Postprocess predicted features
pred_features = pred_features.permute(0, 2, 1) / feat_scale # (B, C, T)
# Start vocoder processing
start_vocoder_t = dt.datetime.now()
wav = vocoder.decode(pred_features).squeeze(1).clamp(-1, 1)
# Calculate processing times and real-time factors
t = (dt.datetime.now() - start_t).total_seconds()
t_no_vocoder = (start_vocoder_t - start_t).total_seconds()
t_vocoder = (dt.datetime.now() - start_vocoder_t).total_seconds()
wav_seconds = wav.shape[-1] / sampling_rate
rtf = t / wav_seconds
rtf_no_vocoder = t_no_vocoder / wav_seconds
rtf_vocoder = t_vocoder / wav_seconds
# metrics = {
# "t": t,
# "t_no_vocoder": t_no_vocoder,
# "t_vocoder": t_vocoder,
# "wav_seconds": wav_seconds,
# "rtf": rtf,
# "rtf_no_vocoder": rtf_no_vocoder,
# "rtf_vocoder": rtf_vocoder,
# }
# Adjust wav volume if necessary
if prompt_rms < target_rms:
wav = wav * prompt_rms / target_rms
# torchaudio.save(save_path, wav.cpu(), sample_rate=sampling_rate)
# return metrics
return wav.cpu()
model_defaults = {
"zipvoice": {
"num_step": 16,
"guidance_scale": 1.0,
},
"zipvoice_distill": {
"num_step": 8,
"guidance_scale": 3.0,
},
}
device = torch.device("cuda", 0)
print("Loading model...")
model_config = "config.json"
with open(model_config, "r") as f:
model_config = json.load(f)
token_file = "tokens.txt"
tokenizer = EspeakTokenizer(token_file=token_file, lang="vi")
tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id}
model_ckpt = "iter-96000-avg-2.pt"
model = ZipVoice(
**model_config["model"],
**tokenizer_config,
)
load_checkpoint(filename=model_ckpt, model=model, strict=True)
model = model.to(device)
model.eval()
vocoder = get_vocoder(None)
vocoder = vocoder.to(device)
vocoder.eval()
if model_config["feature"]["type"] == "vocos":
feature_extractor = VocosFbank()
else:
raise NotImplementedError(
f"Unsupported feature type: {model_config['feature']['type']}"
)
sampling_rate = model_config["feature"]["sampling_rate"]
# generate_sentence(
# save_path=res_wav_path,
# prompt_text=prompt_text,
# prompt_wav=prompt_wav,
# text=text,
# model=model,
# vocoder=vocoder,
# tokenizer=tokenizer,
# feature_extractor=feature_extractor,
# device=device,
# num_step=16,
# guidance_scale=1.0,
# speed=speed,
# t_shift=0.5,
# target_rms=0.1,
# feat_scale=0.1,
# sampling_rate=sampling_rate,
# )
# print("Done") |