|
import spaces |
|
import os |
|
from huggingface_hub import login |
|
import gradio as gr |
|
from cached_path import cached_path |
|
import tempfile |
|
import numpy as np |
|
from vinorm import TTSnorm |
|
from infer_zipvoice import model, tokenizer, feature_extractor, device, generate_sentence, vocoder |
|
from utils import preprocess_ref_audio_text, save_spectrogram, chunk_text |
|
|
|
|
|
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") |
|
|
|
|
|
if hf_token: |
|
login(token=hf_token) |
|
|
|
def post_process(text): |
|
text = " " + text + " " |
|
text = text.replace(" . . ", " . ") |
|
text = " " + text + " " |
|
text = text.replace(" .. ", " . ") |
|
text = " " + text + " " |
|
text = text.replace(" , , ", " , ") |
|
text = " " + text + " " |
|
text = text.replace(" ,, ", " , ") |
|
text = " " + text + " " |
|
text = text.replace('"', "") |
|
return " ".join(text.split()) |
|
|
|
@spaces.GPU |
|
def infer_tts(ref_audio_orig: str, gen_text: str, speed: float = 1.0, request: gr.Request = None): |
|
|
|
if not ref_audio_orig: |
|
raise gr.Error("Please upload a sample audio file.") |
|
if not gen_text.strip(): |
|
raise gr.Error("Please enter the text content to generate voice.") |
|
if len(gen_text.split()) > 1000: |
|
raise gr.Error("Please enter text content with less than 1000 words.") |
|
|
|
try: |
|
gen_texts = chunk_text(gen_text) |
|
final_wave_total = None |
|
final_sample_rate = 24000 |
|
ref_audio, ref_text = "", "" |
|
for i, gen_text in enumerate(gen_texts): |
|
if i == 0: |
|
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, "") |
|
final_wave = generate_sentence( |
|
ref_text.lower(), |
|
ref_audio, |
|
post_process(TTSnorm(gen_text)).lower(), |
|
model=model, |
|
vocoder=vocoder, |
|
tokenizer=tokenizer, |
|
feature_extractor=feature_extractor, |
|
device=device, |
|
speed=speed |
|
).detach().numpy()[0] |
|
if i == 0: |
|
final_wave_total = final_wave |
|
else: |
|
final_wave_total = np.concatenate((final_wave_total, final_wave, np.zeros(12000, dtype=int)), axis=0) |
|
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: |
|
spectrogram_path = tmp_spectrogram.name |
|
save_spectrogram(final_wave_total, spectrogram_path) |
|
|
|
return (final_sample_rate, final_wave_total), spectrogram_path |
|
except Exception as e: |
|
raise gr.Error(f"Error generating voice: {e}") |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown(""" |
|
# π€ ZipVoice: Zero-shot Vietnamese Text-to-Speech Synthesis using Flow Matching with only 123M parameters. |
|
# The model was trained with approximately 150 hours of data on a RTX 3090 GPU. |
|
Enter text and upload a sample voice to generate natural speech. |
|
""") |
|
|
|
with gr.Row(): |
|
ref_audio = gr.Audio(label="π Sample Voice", type="filepath") |
|
gen_text = gr.Textbox(label="π Text", placeholder="Enter the text to generate voice...", lines=3) |
|
|
|
speed = gr.Slider(0.3, 2.0, value=1.0, step=0.1, label="β‘ Speed") |
|
btn_synthesize = gr.Button("π₯ Generate Voice") |
|
|
|
with gr.Row(): |
|
output_audio = gr.Audio(label="π§ Generated Audio", type="numpy") |
|
output_spectrogram = gr.Image(label="π Spectrogram") |
|
|
|
model_limitations = gr.Textbox( |
|
value="""1. This model may not perform well with numerical characters, dates, special characters, etc. |
|
2. The rhythm of some generated audios may be inconsistent or choppy. |
|
3. Default, reference audio text uses the pho-whisper-medium model, which may not always accurately recognize Vietnamese, resulting in poor voice synthesis quality. |
|
4. Inference with overly long paragraphs may produce poor results. |
|
5. This demo uses a for loop to generate audio for each sentence sequentially in long paragraphs, so the speed may be slow""", |
|
label="β Model Limitations", |
|
lines=5, |
|
interactive=False |
|
) |
|
|
|
btn_synthesize.click(infer_tts, inputs=[ref_audio, gen_text, speed], outputs=[output_audio, output_spectrogram]) |
|
|
|
|
|
demo.queue().launch() |