Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,10 @@ from huggingface_hub import login
|
|
4 |
import gradio as gr
|
5 |
from cached_path import cached_path
|
6 |
import tempfile
|
|
|
7 |
from vinorm import TTSnorm
|
8 |
from infer_zipvoice import model, tokenizer, feature_extractor, device
|
9 |
-
from utils import preprocess_ref_audio_text, save_spectrogram
|
10 |
|
11 |
# Retrieve token from secrets
|
12 |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
@@ -39,21 +40,28 @@ def infer_tts(ref_audio_orig: str, gen_text: str, speed: float = 1.0, request: g
|
|
39 |
raise gr.Error("Please enter text content with less than 1000 words.")
|
40 |
|
41 |
try:
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
ref_audio,
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
55 |
spectrogram_path = tmp_spectrogram.name
|
56 |
-
save_spectrogram(
|
57 |
|
58 |
return (final_sample_rate, final_wave), spectrogram_path
|
59 |
except Exception as e:
|
|
|
4 |
import gradio as gr
|
5 |
from cached_path import cached_path
|
6 |
import tempfile
|
7 |
+
import numpy as np
|
8 |
from vinorm import TTSnorm
|
9 |
from infer_zipvoice import model, tokenizer, feature_extractor, device
|
10 |
+
from utils import preprocess_ref_audio_text, save_spectrogram, chunk_text
|
11 |
|
12 |
# Retrieve token from secrets
|
13 |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
|
|
40 |
raise gr.Error("Please enter text content with less than 1000 words.")
|
41 |
|
42 |
try:
|
43 |
+
gen_texts = chunk_text(gen_text)
|
44 |
+
final_wave_total = None
|
45 |
+
for i, gen_text in enumerate(gen_texts):
|
46 |
+
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, "")
|
47 |
+
final_wave = generate_sentence(
|
48 |
+
ref_text.lower(),
|
49 |
+
ref_audio,
|
50 |
+
post_process(TTSnorm(gen_text)).lower(),
|
51 |
+
model=model,
|
52 |
+
vocoder=vocoder,
|
53 |
+
tokenizer=tokenizer,
|
54 |
+
feature_extractor=feature_extractor,
|
55 |
+
device=device,
|
56 |
+
speed=speed
|
57 |
+
)
|
58 |
+
if i == 0:
|
59 |
+
final_wave_total = final_wave
|
60 |
+
else:
|
61 |
+
final_wave_total = np.concatenate((final_wave_total, final_wave), axis=0)
|
62 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
63 |
spectrogram_path = tmp_spectrogram.name
|
64 |
+
save_spectrogram(final_wave_total, spectrogram_path)
|
65 |
|
66 |
return (final_sample_rate, final_wave), spectrogram_path
|
67 |
except Exception as e:
|