THEAIMART's picture
Create app.py
daa7589 verified
raw
history blame
4.09 kB
import streamlit as st
from bs4 import BeautifulSoup as soup
from urllib.request import urlopen
from newspaper import Article
import nltk
nltk.download('punkt')
st.set_page_config(page_title='NewsARC by theaimart')
def fetch_news_search_topic(topic):
site = 'https://news.google.com/rss/search?q={}'.format(topic)
op = urlopen(site) # Open that site
rd = op.read() # read data from site
op.close() # close the object
sp_page = soup(rd, 'xml') # scrapping data from site
news_list = sp_page.find_all('item') # finding news
return news_list
def fetch_top_news():
site = 'https://news.google.com/news/rss'
op = urlopen(site) # Open that site
rd = op.read() # read data from site
op.close() # close the object
sp_page = soup(rd, 'xml') # scrapping data from site
news_list = sp_page.find_all('item') # finding news
return news_list
def fetch_category_news(topic):
site = 'https://news.google.com/news/rss/headlines/section/topic/{}'.format(topic)
op = urlopen(site) # Open that site
rd = op.read() # read data from site
op.close() # close the object
sp_page = soup(rd, 'xml') # scrapping data from site
news_list = sp_page.find_all('item') # finding news
return news_list
def display_news(list_of_news, news_quantity):
c = 0
for news in list_of_news:
c += 1
st.write('**({}) {}**'.format(c, news.title.text))
news_data = Article(news.link.text)
try:
news_data.download()
news_data.parse()
news_data.nlp()
except Exception as e:
st.error(e)
with st.expander(news.title.text):
st.markdown(
'''<h6 style='text-align: justify;'>{}"</h6>'''.format(news_data.summary),
unsafe_allow_html=True)
st.markdown("[Read more at {}...]({})".format(news.source.text, news.link.text))
st.success("Published Date: " + news.pubDate.text)
if c >= news_quantity:
break
def run():
st.title("NewsARC: A Summarised News")
category = ['--Select--', 'Trending News', 'Favourite Topics', 'Search Topic']
cat_op = st.selectbox('Select your Category', category)
if cat_op == category[0]:
st.warning('Please select Type!!')
elif cat_op == category[1]:
st.subheader("Here is the Trending News for you")
no_of_news = st.slider('Number of News:', min_value=5, max_value=25, step=1)
news_list = fetch_top_news()
display_news(news_list, no_of_news)
elif cat_op == category[2]:
av_topics = ['Choose Topic', 'WORLD', 'NATION', 'BUSINESS', 'TECHNOLOGY', 'ENTERTAINMENT', 'SPORTS', 'SCIENCE', 'HEALTH']
st.subheader("Choose your favourite Topic")
chosen_topic = st.selectbox("Choose your favourite Topic", av_topics)
if chosen_topic == av_topics[0]:
st.warning("Please Choose the Topic")
else:
no_of_news = st.slider('Number of News:', min_value=5, max_value=100, step=1)
news_list = fetch_category_news(chosen_topic)
if news_list:
st.subheader("Here are the some {} News for you".format(chosen_topic))
display_news(news_list, no_of_news)
else:
st.error("No News found for {}".format(chosen_topic))
elif cat_op == category[3]:
user_topic = st.text_input("Enter your Topic")
no_of_news = st.slider('Number of News:', min_value=5, max_value=100, step=1)
if st.button("Search") and user_topic != '':
user_topic_pr = user_topic.replace(' ', '')
news_list = fetch_news_search_topic(topic=user_topic_pr)
if news_list:
st.subheader("Here are the some {} News for you".format(user_topic.capitalize()))
display_news(news_list, no_of_news)
else:
st.error("No News found for {}".format(user_topic))
else:
st.warning("Please write Topic Name to Search")
st.write("by theaimart")
run()