Spaces:
Running
Running
File size: 4,375 Bytes
07f3d5b 5f01803 07f3d5b 5f01803 07f3d5b bd9c730 a47f8a0 bd9c730 07f3d5b 5f01803 07f3d5b 8e90038 bd9c730 21443c3 ba85e88 77389b9 8e90038 77389b9 8e90038 07f3d5b d4b9a9c f0d5adf d4b9a9c 07f3d5b 4a90639 4bb8e69 90152c0 4bb8e69 4a90639 6ee4f1f 4bb8e69 07f3d5b 4bb8e69 07f3d5b 4bb8e69 07f3d5b 4bb8e69 07f3d5b 4bb8e69 07f3d5b d0186a4 07f3d5b d4b9a9c 07f3d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import requests
import json
import os
APIKEY = os.environ.get("APIKEY")
APISECRET = os.environ.get("APISECRET")
def predict(text, seed, out_seq_length, min_gen_length, sampling_strategy,
num_beams, length_penalty, no_repeat_ngram_size,
temperature, topk, topp):
global APIKEY
global APISECRET
url = 'https://wudao.aminer.cn/os/api/api/v2/completions_130B'
payload = json.dumps({
"apikey": APIKEY,
"apisecret": APISECRET ,
"language": "zh-CN",
"prompt": text,
"length_penalty": length_penalty,
"temperature": temperature,
"top_k": topk,
"top_p": topp,
"min_gen_length": min_gen_length,
"sampling_strategy": sampling_strategy,
"num_beams": num_beams,
"max_tokens": out_seq_length,
"no_repeat_ngram": no_repeat_ngram_size,
"seed": seed
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
if reponse.json()['status'] == 1:
return 'Please give smaller text than max_tokens or give larger max_tokens.'
answer = response.json()['result']['output']['raw']
if isinstance(answer, list):
answer = answer[0]
answer = answer.replace('[</s>]', '')
return answer
if __name__ == "__main__":
en_fil = ['The Starry Night is an oil-on-canvas painting by [MASK] in June 1889.']
en_gen = ['What is Special relativity? Answer: ']
ch_fil = ['凯旋门位于意大利米兰市古城堡旁。1807年为纪念[MASK]而建,门高25米,顶上矗立两武士青铜古兵车铸像。']
ch_gen = ['五岳是指哪五座山?回答:']
examples = [en_fil, en_gen, ch_fil, ch_gen]
with gr.Blocks() as demo:
gr.Markdown(
"""
# GLM-130B
An Open Bilingual Pre-Trained Model
""")
with gr.Row():
with gr.Column():
model_input = gr.Textbox(lines=7, placeholder='Input something in English or Chinese', label='Input')
with gr.Row():
gen = gr.Button("Generate")
clr = gr.Button("Clear")
outputs = gr.Textbox(lines=7, label='Output')
gr.Markdown(
"""
Generation Parameter
""")
with gr.Row():
with gr.Column():
seed = gr.Slider(maximum=100000, value=1234, step=1, label='Seed')
out_seq_length = gr.Slider(maximum=256, value=128, minimum=32, step=1, label='Output Sequence Length')
with gr.Column():
min_gen_length = gr.Slider(maximum=64, value=0, step=1, label='Min Generate Length')
sampling_strategy = gr.Radio(choices=['BeamSearchStrategy', 'BaseStrategy'], value='BeamSearchStrategy', label='Search Strategy')
with gr.Row():
with gr.Column():
# beam search
gr.Markdown(
"""
Beam Search Parameter
""")
num_beams = gr.Slider(maximum=4, value=1, minimum=1, step=1, label='Number of Beams')
length_penalty = gr.Slider(maximum=1, value=0.8, minimum=0, label='Length Penalty')
no_repeat_ngram_size = gr.Slider(maximum=5, value=3, minimum=1, step=1, label='No Repeat Ngram Size')
with gr.Column():
# base search
gr.Markdown(
"""
Base Search Parameter
""")
temperature = gr.Slider(maximum=1, value=1, minimum=0, label='Temperature')
topk = gr.Slider(maximum=8, value=1, minimum=0, step=1, label='Top K')
topp = gr.Slider(maximum=1, value=0, minimum=0, label='Top P')
inputs = [model_input, seed, out_seq_length, min_gen_length, sampling_strategy, num_beams, length_penalty, no_repeat_ngram_size, temperature, topk, topp]
gen.click(fn=predict, inputs=inputs, outputs=outputs)
clr.click(fn=lambda value: gr.update(value=""), inputs=clr, outputs=model_input)
gr.Markdown("Try this!")
gr_examples = gr.Examples(examples=examples, inputs=model_input)
demo.launch() |