yuxiaod commited on
Commit
cb76808
·
1 Parent(s): 698bdeb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -9,7 +9,7 @@ pinned: false
9
 
10
  The Knowledge Engineering Group (**KEG**) & Data Mining (THUDM) at Tsinghua University.
11
 
12
- We build LLMs:
13
 
14
  * **[ChatGLM](https://github.com/THUDM/ChatGLM3)**: Open Bilingual Chat LLMs, among which the ChatGLM-6B series has attracted **10,000,000** downloads on HF.
15
  * **[CodeGeeX](https://github.com/THUDM/CodeGeeX2)**: A Multilingual Code Generation Model (KDD 2023)
@@ -20,23 +20,23 @@ We build LLMs:
20
  * **[CogVideo](https://github.com/THUDM/CogVideo)**: An Open Text-to-Video Generation Model (ICLR 2023)
21
  * **[AgentTuning](https://github.com/THUDM/AgentTuning)**: Enabling Generalized Agent Abilities for LLMs
22
 
23
- We also work on LLM evaluations:
24
  * **[AgentBench](https://github.com/THUDM/AgentBench)**: A Benchmark to Evaluate LLMs as Agents
25
  * **[LongBench](https://github.com/THUDM/LongBench)**: A Bilingual, Multitask Benchmark for Long Context Understanding
26
 
27
 
28
- We also pre-train graph neural networks:
29
  * **[CogDL](https://github.com/THUDM/CogDL)**: A Library for Graph Deep Learning (WWW 2023)
30
  * **[GraphMAE](https://github.com/THUDM/GraphMAE)**: (Generative) Masked Graph Neural Network Pre-Training. (KDD 2022 & [WWW 2023](https://github.com/THUDM/GraphMAE2))
31
  * **[GPT-GNN](https://github.com/acbull/GPT-GNN)**: Generative Graph Neural Network Pre-Training (KDD 2020, MSR, UCLA).
32
  * **[GCC](https://github.com/THUDM/CogDL)**: Constrative Graph Neural Network Pre-Training (KDD 2020)
33
  * **[SelfKG](https://github.com/THUDM/SelfKG)**: Self-Supervised Learning for Knowledge Graphs (WWW 2022)
34
 
35
- We also work on graph embedding theory and system:
36
  * **[SketchNE](https://github.com/THU-numbda/SketchNE)**: Embedding Billion-Scale Networks Accurately in One Hour (TKDE 2023)
37
  * **[ProNE](https://github.com/THUDM/ProNE)**: Embedding Networks of 100 Million Nodes with 10-400 Speedup (IJCAI 2019)
38
  * **[NetSMF](https://github.com/xptree/NetSMF)**: Embedding Networks of 100 Million Nodes (WWW 2019)
39
  * **[NetMF](https://github.com/xptree/NetMF)**: Understanding DeepWalk, LINE, PTE, and node2vec as Matrix Factorization (WSDM 2018)
40
 
41
- We started with graphs and networks, and always love them:
42
  * **[AMiner](https://www.aminer.cn/)**: An Academic Search and Mining System Since 2006 (KDD 2008, ACM SIGKDD Test of Time Award)
 
9
 
10
  The Knowledge Engineering Group (**KEG**) & Data Mining (THUDM) at Tsinghua University.
11
 
12
+ We build **LLMs**:
13
 
14
  * **[ChatGLM](https://github.com/THUDM/ChatGLM3)**: Open Bilingual Chat LLMs, among which the ChatGLM-6B series has attracted **10,000,000** downloads on HF.
15
  * **[CodeGeeX](https://github.com/THUDM/CodeGeeX2)**: A Multilingual Code Generation Model (KDD 2023)
 
20
  * **[CogVideo](https://github.com/THUDM/CogVideo)**: An Open Text-to-Video Generation Model (ICLR 2023)
21
  * **[AgentTuning](https://github.com/THUDM/AgentTuning)**: Enabling Generalized Agent Abilities for LLMs
22
 
23
+ We also work on **LLM evaluations**:
24
  * **[AgentBench](https://github.com/THUDM/AgentBench)**: A Benchmark to Evaluate LLMs as Agents
25
  * **[LongBench](https://github.com/THUDM/LongBench)**: A Bilingual, Multitask Benchmark for Long Context Understanding
26
 
27
 
28
+ We also **pre-train graph neural networks**:
29
  * **[CogDL](https://github.com/THUDM/CogDL)**: A Library for Graph Deep Learning (WWW 2023)
30
  * **[GraphMAE](https://github.com/THUDM/GraphMAE)**: (Generative) Masked Graph Neural Network Pre-Training. (KDD 2022 & [WWW 2023](https://github.com/THUDM/GraphMAE2))
31
  * **[GPT-GNN](https://github.com/acbull/GPT-GNN)**: Generative Graph Neural Network Pre-Training (KDD 2020, MSR, UCLA).
32
  * **[GCC](https://github.com/THUDM/CogDL)**: Constrative Graph Neural Network Pre-Training (KDD 2020)
33
  * **[SelfKG](https://github.com/THUDM/SelfKG)**: Self-Supervised Learning for Knowledge Graphs (WWW 2022)
34
 
35
+ We also work on **graph embedding theory, algorithms, and systems**:
36
  * **[SketchNE](https://github.com/THU-numbda/SketchNE)**: Embedding Billion-Scale Networks Accurately in One Hour (TKDE 2023)
37
  * **[ProNE](https://github.com/THUDM/ProNE)**: Embedding Networks of 100 Million Nodes with 10-400 Speedup (IJCAI 2019)
38
  * **[NetSMF](https://github.com/xptree/NetSMF)**: Embedding Networks of 100 Million Nodes (WWW 2019)
39
  * **[NetMF](https://github.com/xptree/NetMF)**: Understanding DeepWalk, LINE, PTE, and node2vec as Matrix Factorization (WSDM 2018)
40
 
41
+ We started with **social networks and graphs**, and always love them:
42
  * **[AMiner](https://www.aminer.cn/)**: An Academic Search and Mining System Since 2006 (KDD 2008, ACM SIGKDD Test of Time Award)