Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,14 +2,14 @@ import streamlit as st
|
|
| 2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
# Set page configuration
|
| 6 |
st.set_page_config(
|
| 7 |
page_title="Review Assistant",
|
| 8 |
page_icon="📝",
|
| 9 |
layout="centered"
|
| 10 |
)
|
| 11 |
|
| 12 |
-
# Custom
|
| 13 |
st.markdown("""
|
| 14 |
<style>
|
| 15 |
.main-header {
|
|
@@ -48,24 +48,18 @@ st.markdown("""
|
|
| 48 |
font-weight: bold;
|
| 49 |
margin-bottom: 0.5rem;
|
| 50 |
}
|
| 51 |
-
/*
|
| 52 |
.stButton>button {
|
| 53 |
-
background-color: #
|
| 54 |
color: white;
|
| 55 |
border: none;
|
| 56 |
padding: 0.5rem 2rem;
|
| 57 |
border-radius: 6px;
|
| 58 |
font-weight: 500;
|
| 59 |
-
display: inline-flex;
|
| 60 |
-
align-items: center;
|
| 61 |
-
justify-content: center;
|
| 62 |
}
|
|
|
|
| 63 |
.stButton>button:hover {
|
| 64 |
-
background-color: #
|
| 65 |
-
}
|
| 66 |
-
/* Button icon styling */
|
| 67 |
-
.button-icon {
|
| 68 |
-
margin-right: 8px;
|
| 69 |
}
|
| 70 |
.footer {
|
| 71 |
text-align: center;
|
|
@@ -79,30 +73,30 @@ st.markdown("""
|
|
| 79 |
</style>
|
| 80 |
""", unsafe_allow_html=True)
|
| 81 |
|
| 82 |
-
#
|
| 83 |
st.markdown("<h1 class='main-header'>Smart Review Analysis Assistant</h1>", unsafe_allow_html=True)
|
| 84 |
st.markdown("<p class='sub-header'>Topic Recognition, Sentiment Analysis, and Auto Reply in One Click</p>", unsafe_allow_html=True)
|
| 85 |
|
| 86 |
-
#
|
| 87 |
@st.cache_resource
|
| 88 |
def load_pipelines():
|
| 89 |
"""
|
| 90 |
-
Load all
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
|
| 95 |
-
Returns
|
| 96 |
"""
|
| 97 |
-
#
|
| 98 |
topic_labels = [
|
| 99 |
"billing", "account access", "customer service", "loans",
|
| 100 |
"fraud", "technical issue", "credit card", "mobile app",
|
| 101 |
"branch service", "transaction delay", "account closure", "information error"
|
| 102 |
]
|
| 103 |
|
| 104 |
-
#
|
| 105 |
-
dtype = torch.float32
|
| 106 |
|
| 107 |
# Load topic classification model
|
| 108 |
topic_classifier = pipeline(
|
|
@@ -121,9 +115,8 @@ def load_pipelines():
|
|
| 121 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 122 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 123 |
|
| 124 |
-
# Function to generate customer service replies
|
| 125 |
def generate_reply(text):
|
| 126 |
-
"""Generate a customer service reply based on the
|
| 127 |
prompt_text = f"Please write a short, polite English customer service reply to the following customer comment:\n{text}"
|
| 128 |
inputs = tokenizer(prompt_text, return_tensors="pt", truncation=True, max_length=512)
|
| 129 |
|
|
@@ -138,14 +131,14 @@ def load_pipelines():
|
|
| 138 |
early_stopping=True
|
| 139 |
)
|
| 140 |
|
| 141 |
-
# Clean up generated text
|
| 142 |
reply = tokenizer.decode(gen_ids[0][inputs.input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 143 |
reply = reply.strip('"').replace('\n', ' ').replace(' ', ' ')
|
| 144 |
return reply
|
| 145 |
|
| 146 |
return topic_classifier, sentiment_classifier, generate_reply, topic_labels
|
| 147 |
|
| 148 |
-
# Page
|
| 149 |
st.markdown("### Enter a review for instant analysis")
|
| 150 |
|
| 151 |
# Updated example review as requested
|
|
@@ -158,45 +151,40 @@ user_review = st.text_area(
|
|
| 158 |
height=120
|
| 159 |
)
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
<button class="stButton primaryButton">
|
| 164 |
-
<span class="button-icon">📊</span> Analyze
|
| 165 |
-
</button>
|
| 166 |
-
""", unsafe_allow_html=True)
|
| 167 |
-
|
| 168 |
-
# Check if button is clicked (using the regular button for functionality)
|
| 169 |
-
if st.button("Analyze", key="hidden_button", help="Click to analyze the review"):
|
| 170 |
if not user_review.strip():
|
| 171 |
-
#
|
| 172 |
st.warning("Please enter a valid review!")
|
| 173 |
else:
|
| 174 |
-
# Show loading
|
| 175 |
with st.spinner("Analyzing your review..."):
|
| 176 |
-
# Load models
|
| 177 |
if "topic_pipe" not in st.session_state:
|
| 178 |
st.session_state.topic_pipe, st.session_state.sentiment_pipe, st.session_state.reply_generator, st.session_state.topic_labels = load_pipelines()
|
| 179 |
|
| 180 |
-
#
|
| 181 |
topic_result = st.session_state.topic_pipe(user_review, st.session_state.topic_labels, multi_label=False)
|
| 182 |
topic = topic_result['labels'][0]
|
|
|
|
| 183 |
|
| 184 |
-
#
|
| 185 |
sentiment_result = st.session_state.sentiment_pipe(user_review)
|
| 186 |
sentiment = sentiment_result[0]['label']
|
|
|
|
| 187 |
|
| 188 |
-
# Generate auto
|
| 189 |
reply_text = st.session_state.reply_generator(user_review)
|
| 190 |
|
| 191 |
-
# Display results in a
|
| 192 |
col1, col2 = st.columns(2)
|
| 193 |
with col1:
|
| 194 |
st.markdown(f"<div class='result-card topic-card'><p class='result-label'>Topic:</p>{topic}</div>", unsafe_allow_html=True)
|
| 195 |
with col2:
|
| 196 |
st.markdown(f"<div class='result-card sentiment-card'><p class='result-label'>Sentiment:</p>{sentiment}</div>", unsafe_allow_html=True)
|
| 197 |
|
| 198 |
-
# Display
|
| 199 |
st.markdown(f"<div class='result-card reply-card'><p class='result-label'>Auto-reply Suggestion:</p>{reply_text}</div>", unsafe_allow_html=True)
|
| 200 |
|
| 201 |
# Page footer
|
| 202 |
-
st.markdown("<div class='footer'>©
|
|
|
|
| 2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
# Set page configuration for the app
|
| 6 |
st.set_page_config(
|
| 7 |
page_title="Review Assistant",
|
| 8 |
page_icon="📝",
|
| 9 |
layout="centered"
|
| 10 |
)
|
| 11 |
|
| 12 |
+
# Custom CSS styling for the page
|
| 13 |
st.markdown("""
|
| 14 |
<style>
|
| 15 |
.main-header {
|
|
|
|
| 48 |
font-weight: bold;
|
| 49 |
margin-bottom: 0.5rem;
|
| 50 |
}
|
| 51 |
+
/* Changed button color from blue (#2563EB) to green (#10B981) */
|
| 52 |
.stButton>button {
|
| 53 |
+
background-color: #10B981;
|
| 54 |
color: white;
|
| 55 |
border: none;
|
| 56 |
padding: 0.5rem 2rem;
|
| 57 |
border-radius: 6px;
|
| 58 |
font-weight: 500;
|
|
|
|
|
|
|
|
|
|
| 59 |
}
|
| 60 |
+
/* Changed hover color to darker green (#059669) */
|
| 61 |
.stButton>button:hover {
|
| 62 |
+
background-color: #059669;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
}
|
| 64 |
.footer {
|
| 65 |
text-align: center;
|
|
|
|
| 73 |
</style>
|
| 74 |
""", unsafe_allow_html=True)
|
| 75 |
|
| 76 |
+
# Page headers
|
| 77 |
st.markdown("<h1 class='main-header'>Smart Review Analysis Assistant</h1>", unsafe_allow_html=True)
|
| 78 |
st.markdown("<p class='sub-header'>Topic Recognition, Sentiment Analysis, and Auto Reply in One Click</p>", unsafe_allow_html=True)
|
| 79 |
|
| 80 |
+
# ------- Load ML Pipelines -------
|
| 81 |
@st.cache_resource
|
| 82 |
def load_pipelines():
|
| 83 |
"""
|
| 84 |
+
Load all required machine learning models for review analysis:
|
| 85 |
+
- Topic classifier using zero-shot classification
|
| 86 |
+
- Sentiment analysis model
|
| 87 |
+
- Customer reply generation model
|
| 88 |
|
| 89 |
+
Returns models and topic labels for use in the application
|
| 90 |
"""
|
| 91 |
+
# Define topic categories for classification
|
| 92 |
topic_labels = [
|
| 93 |
"billing", "account access", "customer service", "loans",
|
| 94 |
"fraud", "technical issue", "credit card", "mobile app",
|
| 95 |
"branch service", "transaction delay", "account closure", "information error"
|
| 96 |
]
|
| 97 |
|
| 98 |
+
# Ensure compatibility with CPU-only environments
|
| 99 |
+
dtype = torch.float32 # Use float32 for better CPU compatibility
|
| 100 |
|
| 101 |
# Load topic classification model
|
| 102 |
topic_classifier = pipeline(
|
|
|
|
| 115 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 116 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 117 |
|
|
|
|
| 118 |
def generate_reply(text):
|
| 119 |
+
"""Generate a polite customer service reply based on the given review text"""
|
| 120 |
prompt_text = f"Please write a short, polite English customer service reply to the following customer comment:\n{text}"
|
| 121 |
inputs = tokenizer(prompt_text, return_tensors="pt", truncation=True, max_length=512)
|
| 122 |
|
|
|
|
| 131 |
early_stopping=True
|
| 132 |
)
|
| 133 |
|
| 134 |
+
# Clean up the generated text
|
| 135 |
reply = tokenizer.decode(gen_ids[0][inputs.input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 136 |
reply = reply.strip('"').replace('\n', ' ').replace(' ', ' ')
|
| 137 |
return reply
|
| 138 |
|
| 139 |
return topic_classifier, sentiment_classifier, generate_reply, topic_labels
|
| 140 |
|
| 141 |
+
# ------- Page Layout --------
|
| 142 |
st.markdown("### Enter a review for instant analysis")
|
| 143 |
|
| 144 |
# Updated example review as requested
|
|
|
|
| 151 |
height=120
|
| 152 |
)
|
| 153 |
|
| 154 |
+
# Button to trigger analysis
|
| 155 |
+
if st.button("Analyze"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
if not user_review.strip():
|
| 157 |
+
# Validate user input
|
| 158 |
st.warning("Please enter a valid review!")
|
| 159 |
else:
|
| 160 |
+
# Show user-friendly loading message
|
| 161 |
with st.spinner("Analyzing your review..."):
|
| 162 |
+
# Load models on first use to avoid loading message on startup
|
| 163 |
if "topic_pipe" not in st.session_state:
|
| 164 |
st.session_state.topic_pipe, st.session_state.sentiment_pipe, st.session_state.reply_generator, st.session_state.topic_labels = load_pipelines()
|
| 165 |
|
| 166 |
+
# Run topic classification
|
| 167 |
topic_result = st.session_state.topic_pipe(user_review, st.session_state.topic_labels, multi_label=False)
|
| 168 |
topic = topic_result['labels'][0]
|
| 169 |
+
# Removed confidence percentage as requested
|
| 170 |
|
| 171 |
+
# Run sentiment analysis
|
| 172 |
sentiment_result = st.session_state.sentiment_pipe(user_review)
|
| 173 |
sentiment = sentiment_result[0]['label']
|
| 174 |
+
# Removed confidence percentage as requested
|
| 175 |
|
| 176 |
+
# Generate auto reply
|
| 177 |
reply_text = st.session_state.reply_generator(user_review)
|
| 178 |
|
| 179 |
+
# Display results in a visually appealing format
|
| 180 |
col1, col2 = st.columns(2)
|
| 181 |
with col1:
|
| 182 |
st.markdown(f"<div class='result-card topic-card'><p class='result-label'>Topic:</p>{topic}</div>", unsafe_allow_html=True)
|
| 183 |
with col2:
|
| 184 |
st.markdown(f"<div class='result-card sentiment-card'><p class='result-label'>Sentiment:</p>{sentiment}</div>", unsafe_allow_html=True)
|
| 185 |
|
| 186 |
+
# Display suggested reply
|
| 187 |
st.markdown(f"<div class='result-card reply-card'><p class='result-label'>Auto-reply Suggestion:</p>{reply_text}</div>", unsafe_allow_html=True)
|
| 188 |
|
| 189 |
# Page footer
|
| 190 |
+
st.markdown("<div class='footer'>© 2024 Review AI Assistant</div>", unsafe_allow_html=True)
|