Spaces:
Running
on
Zero
Running
on
Zero
| import concurrent.futures | |
| import random | |
| import gradio as gr | |
| import requests | |
| import io, base64, json, os | |
| import spaces | |
| from PIL import Image | |
| from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, VIDEO_GENERATION_MODELS, MUSEUM_UNSUPPORTED_MODELS, DESIRED_APPEAR_MODEL, load_pipeline | |
| from .fetch_museum_results import draw_from_imagen_museum, draw2_from_imagen_museum, draw_from_videogen_museum, draw2_from_videogen_museum | |
| from .pre_download import pre_download_all_models, pre_download_video_models | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| def debug_packages(): | |
| import pkg_resources | |
| installed_packages = pkg_resources.working_set | |
| for package in installed_packages: | |
| print(f"{package.key}=={package.version}") | |
| class ModelManager: | |
| def __init__(self, enable_nsfw=False, do_pre_download=False, do_debug_packages=False): | |
| self.model_ig_list = IMAGE_GENERATION_MODELS | |
| self.model_ie_list = IMAGE_EDITION_MODELS | |
| self.model_vg_list = VIDEO_GENERATION_MODELS | |
| self.excluding_model_list = MUSEUM_UNSUPPORTED_MODELS | |
| self.desired_model_list = DESIRED_APPEAR_MODEL | |
| self.enable_nsfw = enable_nsfw | |
| self.load_guard(enable_nsfw) | |
| self.loaded_models = {} | |
| if do_pre_download: | |
| pre_download_all_models() | |
| if do_debug_packages: | |
| debug_packages() | |
| def load_model_pipe(self, model_name): | |
| if not model_name in self.loaded_models: | |
| pipe = load_pipeline(model_name) | |
| self.loaded_models[model_name] = pipe | |
| else: | |
| pipe = self.loaded_models[model_name] | |
| return pipe | |
| def load_guard(self, enable_nsfw=True): | |
| model_id = "meta-llama/Llama-Guard-3-8B" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.bfloat16 | |
| token = os.getenv("HF_TOKEN") or os.getenv("HF_GUARD") | |
| if enable_nsfw: | |
| self.guard_tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| self.guard = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map=device) | |
| else: | |
| self.guard_tokenizer = None | |
| self.guard = None | |
| def NSFW_filter(self, prompt): | |
| chat = [{"role": "user", "content": prompt}] | |
| input_ids = self.guard_tokenizer.apply_chat_template(chat, return_tensors="pt").to('cuda') | |
| self.guard.cuda() | |
| if self.guard: | |
| def _generate(): | |
| return self.guard.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0) | |
| output = _generate() | |
| output = self.guard.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0) | |
| prompt_len = input_ids.shape[-1] | |
| result = self.guard_tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) | |
| return result | |
| else: | |
| # guard is disabled | |
| return "safe" | |
| def generate_image_ig(self, prompt, model_name): | |
| # if 'unsafe' not in self.NSFW_filter(prompt): | |
| print('The prompt is safe') | |
| pipe = self.load_model_pipe(model_name) | |
| result = pipe(prompt=prompt) | |
| # else: | |
| # print(f'The prompt "{prompt}" is not safe') | |
| # result = '' | |
| return result | |
| def generate_image_ig_api(self, prompt, model_name): | |
| # if 'unsafe' not in self.NSFW_filter(prompt): | |
| print('The prompt is safe') | |
| pipe = self.load_model_pipe(model_name) | |
| result = pipe(prompt=prompt) | |
| # else: | |
| # print(f'The prompt "{prompt}" is not safe') | |
| # result = '' | |
| return result | |
| def generate_image_ig_museum(self, model_name): | |
| model_name = model_name.split('_')[1] | |
| result_list = draw_from_imagen_museum("t2i", model_name) | |
| image_link = result_list[0] | |
| prompt = result_list[1] | |
| return image_link, prompt | |
| def generate_image_ig_parallel_anony(self, prompt, model_A, model_B): | |
| # Using list comprehension to get the difference between two lists | |
| picking_list = [item for item in self.model_ig_list if item not in self.excluding_model_list] | |
| if model_A == "" and model_B == "": | |
| model_names = random.sample([model for model in picking_list], 2) | |
| else: | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub") | |
| else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names] | |
| results = [future.result() for future in futures] | |
| return results[0], results[1], model_names[0], model_names[1] | |
| def generate_image_ig_museum_parallel_anony(self, model_A, model_B): | |
| # Using list comprehension to get the difference between two lists | |
| picking_list = [item for item in self.model_ig_list if item not in self.excluding_model_list] | |
| if model_A == "" and model_B == "": | |
| model_names = random.sample([model for model in picking_list], 2) | |
| else: | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| model_1 = model_names[0].split('_')[1] | |
| model_2 = model_names[1].split('_')[1] | |
| result_list = draw2_from_imagen_museum("t2i", model_1, model_2) | |
| image_links = result_list[0] | |
| prompt_list = result_list[1] | |
| return image_links[0], image_links[1], model_names[0], model_names[1], prompt_list[0] | |
| def generate_image_ig_parallel(self, prompt, model_A, model_B): | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub") | |
| else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names] | |
| results = [future.result() for future in futures] | |
| return results[0], results[1] | |
| def generate_image_ig_museum_parallel(self, model_A, model_B): | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| model_1 = model_A.split('_')[1] | |
| model_2 = model_B.split('_')[1] | |
| result_list = draw2_from_imagen_museum("t2i", model_1, model_2) | |
| image_links = result_list[0] | |
| prompt_list = result_list[1] | |
| return image_links[0], image_links[1], prompt_list[0] | |
| def generate_image_ie(self, textbox_source, textbox_target, textbox_instruct, source_image, model_name): | |
| # if 'unsafe' not in self.NSFW_filter(" ".join([textbox_source, textbox_target, textbox_instruct])): | |
| pipe = self.load_model_pipe(model_name) | |
| result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct) | |
| # else: | |
| # result = '' | |
| return result | |
| def generate_image_ie_museum(self, model_name): | |
| model_name = model_name.split('_')[1] | |
| result_list = draw_from_imagen_museum("tie", model_name) | |
| image_links = result_list[0] | |
| prompt_list = result_list[1] | |
| # image_links = [src, model] | |
| # prompt_list = [source_caption, target_caption, instruction] | |
| return image_links[0], image_links[1], prompt_list[0], prompt_list[1], prompt_list[2] | |
| def generate_image_ie_parallel(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| futures = [ | |
| executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, | |
| model) for model in model_names] | |
| results = [future.result() for future in futures] | |
| return results[0], results[1] | |
| def generate_image_ie_museum_parallel(self, model_A, model_B): | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| model_1 = model_names[0].split('_')[1] | |
| model_2 = model_names[1].split('_')[1] | |
| result_list = draw2_from_imagen_museum("tie", model_1, model_2) | |
| image_links = result_list[0] | |
| prompt_list = result_list[1] | |
| # image_links = [src, model_A, model_B] | |
| # prompt_list = [source_caption, target_caption, instruction] | |
| return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2] | |
| def generate_image_ie_parallel_anony(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): | |
| # Using list comprehension to get the difference between two lists | |
| picking_list = [item for item in self.model_ie_list if item not in self.excluding_model_list] | |
| if model_A == "" and model_B == "": | |
| model_names = random.sample([model for model in picking_list], 2) | |
| else: | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| futures = [executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model) for model in model_names] | |
| results = [future.result() for future in futures] | |
| return results[0], results[1], model_names[0], model_names[1] | |
| def generate_image_ie_museum_parallel_anony(self, model_A, model_B): | |
| # Using list comprehension to get the difference between two lists | |
| picking_list = [item for item in self.model_ie_list if item not in self.excluding_model_list] | |
| if model_A == "" and model_B == "": | |
| model_names = random.sample([model for model in picking_list], 2) | |
| else: | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| model_1 = model_names[0].split('_')[1] | |
| model_2 = model_names[1].split('_')[1] | |
| result_list = draw2_from_imagen_museum("tie", model_1, model_2) | |
| image_links = result_list[0] | |
| prompt_list = result_list[1] | |
| # image_links = [src, model_A, model_B] | |
| # prompt_list = [source_caption, target_caption, instruction] | |
| return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2], model_names[0], model_names[1] | |
| def generate_video_vg(self, prompt, model_name): | |
| # if 'unsafe' not in self.NSFW_filter(prompt): | |
| pipe = self.load_model_pipe(model_name) | |
| result = pipe(prompt=prompt) | |
| # else: | |
| # result = '' | |
| return result | |
| def generate_video_vg_api(self, prompt, model_name): | |
| # if 'unsafe' not in self.NSFW_filter(prompt): | |
| pipe = self.load_model_pipe(model_name) | |
| result = pipe(prompt=prompt) | |
| # else: | |
| # result = '' | |
| return result | |
| def generate_video_vg_museum(self, model_name): | |
| model_name = model_name.split('_')[1] | |
| result_list = draw_from_videogen_museum("t2v", model_name) | |
| video_link = result_list[0] | |
| prompt = result_list[1] | |
| return video_link, prompt | |
| def generate_video_vg_parallel_anony(self, prompt, model_A, model_B): | |
| # Using list comprehension to get the difference between two lists | |
| picking_list = [item for item in self.model_vg_list if item not in self.excluding_model_list] | |
| if model_A == "" and model_B == "": | |
| model_names = random.sample([model for model in picking_list], 2) | |
| else: | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| futures = [executor.submit(self.generate_video_vg, prompt, model) if model.startswith("videogenhub") | |
| else executor.submit(self.generate_video_vg_api, prompt, model) for model in model_names] | |
| results = [future.result() for future in futures] | |
| return results[0], results[1], model_names[0], model_names[1] | |
| def generate_video_vg_museum_parallel_anony(self, model_A, model_B): | |
| # Using list comprehension to get the difference between two lists | |
| picking_list = [item for item in self.model_vg_list if item not in self.excluding_model_list] | |
| #picking_list = [item for item in picking_list if item not in self.desired_model_list] | |
| if model_A == "" and model_B == "": | |
| model_names = random.sample([model for model in picking_list], 2) | |
| #override the random selection | |
| #model_names[random.choice([0, 1])] = random.choice(self.desired_model_list) | |
| else: | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| model_1 = model_names[0].split('_')[1] | |
| model_2 = model_names[1].split('_')[1] | |
| result_list = draw2_from_videogen_museum("t2v", model_1, model_2) | |
| video_links = result_list[0] | |
| prompt_list = result_list[1] | |
| return video_links[0], video_links[1], model_names[0], model_names[1], prompt_list[0] | |
| def generate_video_vg_parallel(self, prompt, model_A, model_B): | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| futures = [executor.submit(self.generate_video_vg, prompt, model) if model.startswith("videogenhub") | |
| else executor.submit(self.generate_video_vg_api, prompt, model) for model in model_names] | |
| results = [future.result() for future in futures] | |
| return results[0], results[1] | |
| def generate_video_vg_museum_parallel(self, model_A, model_B): | |
| model_names = [model_A, model_B] | |
| with concurrent.futures.ThreadPoolExecutor() as executor: | |
| model_1 = model_A.split('_')[1] | |
| model_2 = model_B.split('_')[1] | |
| result_list = draw2_from_videogen_museum("t2v", model_1, model_2) | |
| video_links = result_list[0] | |
| prompt_list = result_list[1] | |
| return video_links[0], video_links[1], prompt_list[0] |