File size: 6,964 Bytes
2016488
 
 
 
 
ba1590f
 
2016488
 
 
 
 
15e5e27
 
 
 
2016488
15e5e27
df126cf
2016488
ba1590f
df126cf
2016488
 
df126cf
ba1590f
 
 
df126cf
ba1590f
 
df126cf
8ad4dd0
 
 
df126cf
8ad4dd0
 
df126cf
2016488
 
3da8b93
 
 
2016488
 
 
 
 
 
f8121ba
 
 
 
 
 
2016488
 
 
 
15e5e27
 
2016488
 
 
b4a00d5
4ed87c1
 
 
15e5e27
 
 
 
 
b4a00d5
2016488
 
15e5e27
 
 
 
 
 
4ed87c1
 
 
15e5e27
 
 
 
22c598e
15e5e27
 
 
 
 
22c598e
b4a00d5
2016488
 
4b8c00a
bd24c06
2b86120
 
 
 
 
4b8c00a
 
2b86120
4b8c00a
 
15e5e27
 
 
 
 
 
 
 
 
 
c304fa4
2b86120
15e5e27
2016488
59091a2
 
4ed87c1
15e5e27
491e896
75cdf4b
2016488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba1590f
 
 
2016488
 
 
 
 
 
 
 
 
 
 
 
ba1590f
 
2016488
 
 
ba1590f
2016488
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import pandas as pd
import gradio as gr
import csv
import json
import os
import requests
import io
import shutil
from huggingface_hub import Repository

HF_TOKEN = os.environ.get("HF_TOKEN")

BASE_COLS = ["Rank", "Models", "Model Size(B)", "Data Source"]
TASKS_V1 = ["V1-Overall", "I-CLS", "I-QA", "I-RET", "I-VG"]
TASKS_V2 = ["V2-Overall", "V-CLS", "V-QA", "V-RET", "V-MRET", "VisDoc"]
COLUMN_NAMES = BASE_COLS + TASKS_V1 + TASKS_V2

DATA_TITLE_TYPE = ['number', 'markdown', 'str', 'markdown'] + \
                    ['number'] * len(TASKS_V1 + TASKS_V2)

LEADERBOARD_INTRODUCTION = """
# 📊 **MMEB LEADERBOARD (V1 & V2)**

## Introduction
We introduce a novel benchmark, **MMEB-V1 (Massive Multimodal Embedding Benchmark)**, 
which includes 36 datasets spanning four meta-task categories: classification, visual question answering, retrieval, and visual grounding. MMEB provides a comprehensive framework for training
and evaluating embedding models across various combinations of text and image modalities. 
All tasks are reformulated as ranking tasks, where the model follows instructions, processes a query, and selects the correct target from a set of candidates. The query and target can be an image, text,
or a combination of both. MMEB-V1 is divided into 20 in-distribution datasets, which can be used for
training, and 16 out-of-distribution datasets, reserved for evaluation.

Building upon on **MMEB-V1**, **MMEB-V2** expands the evaluation scope to include five new tasks: four video-based tasks 
— Video Retrieval, Moment Retrieval, Video Classification, and Video Question Answering — and one task focused on visual documents, Visual Document Retrieval. 
This comprehensive suite enables robust evaluation of multimodal embedding models across static, temporal, and structured visual data settings.

| [**📈Overview**](https://tiger-ai-lab.github.io/VLM2Vec/) | [**Github**](https://github.com/TIGER-AI-Lab/VLM2Vec) 
| [**📖MMEB-V2/VLM2Vec-V2 Paper (TBA)**](https://arxiv.org/abs/2410.05160) 
| [**📖MMEB-V1/VLM2Vec-V1 Paper**](https://arxiv.org/abs/2410.05160) 
| [**🤗Hugging Face**](https://huggingface.co/datasets/TIGER-Lab/MMEB-V2) |
"""

TABLE_INTRODUCTION = """**I-CLS**: Image Classification, **I-QA**: (Image) Visual Question Answering, **I-RET**: Image Retrieval, **I-VG**: (Image) Visual Grounding \n
**V1-Overall** = (10 * **I-CLS** + 10 * **I-QA** + 12 * **I-RET** + 4 * **I-VG**) / 36 \n
Models are ranked based on **V1-Overall**."""

LEADERBOARD_INFO = """
## Dataset Summary
"""

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@article{jiang2024vlm2vec,
  title={VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks},
  author={Jiang, Ziyan and Meng, Rui and Yang, Xinyi and Yavuz, Semih and Zhou, Yingbo and Chen, Wenhu},
  journal={arXiv preprint arXiv:2410.05160},
  year={2024}
}"""

SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction

## ⚠ Please note that you need to submit the JSON file with the following format:

### **TO SUBMIT V1 ONLY**
```json
[
    {
        "Model": "<Model Name>",
        "URL": "<Model URL>" or null,
        "Model Size(B)": 1000 or null,
        "Data Source": "Self-Reported",
        "V1-Overall": 50.0,
        "I-CLS": 50.0,
        "I-QA": 50.0,
        "I-RET": 50.0,
        "I-VG": 50.0
    }, 
]
```

### **TO SUBMIT V2 ONLY**
```json
[
    {
        "Model": "<Model Name>",
        "URL": "<Model URL>" or null,
        "Model Size(B)": 1000 or null,
        "Data Source": "Self-Reported",
        "V2-Overall": 50.0,
        "V-CLS": 50.0,
        "V-QA": 50.0,
        "V-RET": 50.0,
        "V-MRET": 50.0, 
        "VisDoc": 50.0
    }, 
]
```
You are also welcome to submit both versions by including all the fields above! :) \n
You may refer to the [**GitHub page**](https://github.com/TIGER-AI-Lab/VLM2Vec) for instructions about evaluating your model. \n
Please send us an email at [email protected], attaching the JSON file. We will review your submission and update the leaderboard accordingly.
"""

def create_hyperlinked_names(df):
    def convert_url(url, model_name):
        return f'<a href="{url}">{model_name}</a>' if url is not None else model_name

    def add_link_to_model_name(row):
        row['Models'] = convert_url(row['URL'], row['Models'])
        return row
    
    df = df.copy()
    df = df.apply(add_link_to_model_name, axis=1)
    return df

# def fetch_data(file: str) -> pd.DataFrame:
#     # fetch the leaderboard data from remote
#     if file is None:
#         raise ValueError("URL Not Provided")
#     url = f"https://huggingface.co/spaces/TIGER-Lab/MMEB/resolve/main/{file}"
#     print(f"Fetching data from {url}")
#     response = requests.get(url)
#     if response.status_code != 200:
#         raise requests.HTTPError(f"Failed to fetch data: HTTP status code {response.status_code}")
#     return pd.read_json(io.StringIO(response.text), orient='records', lines=True)

def get_df(file="results.jsonl"):
    df = pd.read_json(file, orient='records', lines=True)
    df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
    for task in TASKS_V1 + TASKS_V2:
        if df[task].isnull().any():
            df[task] = df[task].apply(lambda score: '-' if pd.isna(score) else score)
    df = df.sort_values(by=['V1-Overall'], ascending=False)
    df = create_hyperlinked_names(df)
    df['Rank'] = range(1, len(df) + 1)
    return df

def refresh_data():
    df = get_df()
    return df[COLUMN_NAMES]

def search_and_filter_models(df, query, min_size, max_size):
    filtered_df = df.copy()
    
    if query:
        filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]

    size_mask = filtered_df['Model Size(B)'].apply(lambda x: 
        (min_size <= 1000.0 <= max_size) if x == 'unknown' 
        else (min_size <= x <= max_size))
    
    filtered_df = filtered_df[size_mask]
    
    return filtered_df[COLUMN_NAMES]


def search_models(df, query):
    if query:
        return df[df['Models'].str.contains(query, case=False, na=False)]
    return df

def get_size_range(df):
    sizes = df['Model Size(B)'].apply(lambda x: 0.0 if x == 'unknown' else x)
    if (sizes == 0.0).all():
        return 0.0, 1000.0
    return float(sizes.min()), float(sizes.max())


def process_model_size(size):
    if pd.isna(size) or size == 'unk':
        return 'unknown'
    try:
        val = float(size)
        return val
    except (ValueError, TypeError):
        return 'unknown'

def filter_columns_by_tasks(df, selected_tasks=None):
    if selected_tasks is None or len(selected_tasks) == 0:
        return df[COLUMN_NAMES]
    
    base_columns = ['Models', 'Model Size(B)', 'Data Source', 'Overall']
    selected_columns = base_columns + selected_tasks
    
    available_columns = [col for col in selected_columns if col in df.columns]
    return df[available_columns]