Spaces:
Running
Running
add vd sub task scores
Browse files- app.py +1 -1
- utils.py +0 -1
- utils_v2.py +30 -9
app.py
CHANGED
|
@@ -134,7 +134,7 @@ with gr.Blocks() as block:
|
|
| 134 |
with gr.TabItem("π Visual Doc", elem_id="qa-tab-table1", id=4):
|
| 135 |
gr.Markdown(v2.TABLE_INTRODUCTION_D)
|
| 136 |
data_component5 = gr.components.Dataframe(
|
| 137 |
-
value=v2.rank_models(df2[v2.COLUMN_NAMES_D], '
|
| 138 |
headers=v2.COLUMN_NAMES_D,
|
| 139 |
type="pandas",
|
| 140 |
datatype=v2.DATA_TITLE_TYPE_D,
|
|
|
|
| 134 |
with gr.TabItem("π Visual Doc", elem_id="qa-tab-table1", id=4):
|
| 135 |
gr.Markdown(v2.TABLE_INTRODUCTION_D)
|
| 136 |
data_component5 = gr.components.Dataframe(
|
| 137 |
+
value=v2.rank_models(df2[v2.COLUMN_NAMES_D], 'Visdoc-Overall'),
|
| 138 |
headers=v2.COLUMN_NAMES_D,
|
| 139 |
type="pandas",
|
| 140 |
datatype=v2.DATA_TITLE_TYPE_D,
|
utils.py
CHANGED
|
@@ -103,7 +103,6 @@ SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction
|
|
| 103 |
}
|
| 104 |
}
|
| 105 |
```
|
| 106 |
-
Note: We still accept the old format until 2025-06-30.
|
| 107 |
Please refer to the [**GitHub page**](https://github.com/TIGER-AI-Lab/VLM2Vec) for detailed instructions about evaluating your model. \n
|
| 108 |
To submit, create a pull request and upload the generated JSON file to the ***scores*** folder, then send us an email at [email protected], including your model's information. \n We will review your submission and update the leaderboard accordingly. \n
|
| 109 |
Please also share any feedback or suggestions you have for improving the leaderboard experience. We appreciate your contributions to the MMEB community!
|
|
|
|
| 103 |
}
|
| 104 |
}
|
| 105 |
```
|
|
|
|
| 106 |
Please refer to the [**GitHub page**](https://github.com/TIGER-AI-Lab/VLM2Vec) for detailed instructions about evaluating your model. \n
|
| 107 |
To submit, create a pull request and upload the generated JSON file to the ***scores*** folder, then send us an email at [email protected], including your model's information. \n We will review your submission and update the leaderboard accordingly. \n
|
| 108 |
Please also share any feedback or suggestions you have for improving the leaderboard experience. We appreciate your contributions to the MMEB community!
|
utils_v2.py
CHANGED
|
@@ -20,7 +20,10 @@ DATASETS = {
|
|
| 20 |
"I-VG": ['MSCOCO', 'RefCOCO', 'RefCOCO-Matching', 'Visual7W']
|
| 21 |
},
|
| 22 |
"visdoc": {
|
| 23 |
-
"
|
|
|
|
|
|
|
|
|
|
| 24 |
},
|
| 25 |
"video": {
|
| 26 |
"V-CLS": ['K700', 'UCF101', 'HMDB51', 'SmthSmthV2', 'Breakfast'],
|
|
@@ -37,29 +40,29 @@ SPECIAL_METRICS = {
|
|
| 37 |
}
|
| 38 |
|
| 39 |
BASE_COLS = ['Rank', 'Models', 'Model Size(B)']
|
| 40 |
-
TASKS = ["Overall", "I-CLS", "I-QA", "I-RET", "I-VG", "VisDoc", "V-CLS", "V-QA", "V-RET", "V-MRET"]
|
| 41 |
BASE_DATA_TITLE_TYPE = ['number', 'markdown', 'str', 'markdown']
|
| 42 |
|
| 43 |
-
COLUMN_NAMES = BASE_COLS + ["Overall", 'Image-Overall', 'Video-Overall', '
|
| 44 |
DATA_TITLE_TYPE = BASE_DATA_TITLE_TYPE + \
|
| 45 |
['number'] * 3
|
| 46 |
|
| 47 |
-
SUB_TASKS_I =
|
| 48 |
TASKS_I = ['Image-Overall'] + SUB_TASKS_I + ALL_DATASETS_SPLITS['image']
|
| 49 |
COLUMN_NAMES_I = BASE_COLS + TASKS_I
|
| 50 |
DATA_TITLE_TYPE_I = BASE_DATA_TITLE_TYPE + \
|
| 51 |
-
['number'] *
|
| 52 |
|
| 53 |
-
SUB_TASKS_V =
|
| 54 |
TASKS_V = ['Video-Overall'] + SUB_TASKS_V + ALL_DATASETS_SPLITS['video']
|
| 55 |
COLUMN_NAMES_V = BASE_COLS + TASKS_V
|
| 56 |
DATA_TITLE_TYPE_V = BASE_DATA_TITLE_TYPE + \
|
| 57 |
-
['number'] *
|
| 58 |
|
| 59 |
-
|
|
|
|
| 60 |
COLUMN_NAMES_D = BASE_COLS + TASKS_D
|
| 61 |
DATA_TITLE_TYPE_D = BASE_DATA_TITLE_TYPE + \
|
| 62 |
-
['number'] * len(TASKS_D)
|
| 63 |
|
| 64 |
TABLE_INTRODUCTION = """**MMEB**: Massive MultiModal Embedding Benchmark \n
|
| 65 |
Models are ranked based on **Overall**"""
|
|
@@ -155,6 +158,24 @@ def rank_models(df, column='Overall', rank_name='Rank'):
|
|
| 155 |
df[rank_name] = range(1, len(df) + 1)
|
| 156 |
return df
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
def get_df():
|
| 159 |
"""Generates a DataFrame from the loaded data."""
|
| 160 |
all_data = load_data()
|
|
|
|
| 20 |
"I-VG": ['MSCOCO', 'RefCOCO', 'RefCOCO-Matching', 'Visual7W']
|
| 21 |
},
|
| 22 |
"visdoc": {
|
| 23 |
+
"ViDoRe-V1": ['ViDoRe_arxivqa', 'ViDoRe_docvqa', 'ViDoRe_infovqa', 'ViDoRe_tabfquad', 'ViDoRe_tatdqa', 'ViDoRe_shiftproject', 'ViDoRe_syntheticDocQA_artificial_intelligence', 'ViDoRe_syntheticDocQA_energy', 'ViDoRe_syntheticDocQA_government_reports', 'ViDoRe_syntheticDocQA_healthcare_industry'],
|
| 24 |
+
"ViDoRe-V2": ["ViDoRe_esg_reports_human_labeled_v2", "ViDoRe_biomedical_lectures_v2", "ViDoRe_economics_reports_v2", "ViDoRe_esg_reports_v2"], # Following Abandoned: "ViDoRe_biomedical_lectures_v2_multilingual", "ViDoRe_economics_reports_v2_multilingual", "ViDoRe_esg_reports_v2_multilingual"
|
| 25 |
+
"VisRAG": ['VisRAG_ArxivQA', 'VisRAG_ChartQA', 'VisRAG_MP-DocVQA', 'VisRAG_SlideVQA', 'VisRAG_InfoVQA', 'VisRAG_PlotQA'],
|
| 26 |
+
"VisDoc-OOD": ['ViDoSeek-page', 'ViDoSeek-doc', 'MMLongBench-page', 'MMLongBench-doc']
|
| 27 |
},
|
| 28 |
"video": {
|
| 29 |
"V-CLS": ['K700', 'UCF101', 'HMDB51', 'SmthSmthV2', 'Breakfast'],
|
|
|
|
| 40 |
}
|
| 41 |
|
| 42 |
BASE_COLS = ['Rank', 'Models', 'Model Size(B)']
|
|
|
|
| 43 |
BASE_DATA_TITLE_TYPE = ['number', 'markdown', 'str', 'markdown']
|
| 44 |
|
| 45 |
+
COLUMN_NAMES = BASE_COLS + ["Overall", 'Image-Overall', 'Video-Overall', 'Visdoc-Overall']
|
| 46 |
DATA_TITLE_TYPE = BASE_DATA_TITLE_TYPE + \
|
| 47 |
['number'] * 3
|
| 48 |
|
| 49 |
+
SUB_TASKS_I = ["I-CLS", "I-QA", "I-RET", "I-VG"]
|
| 50 |
TASKS_I = ['Image-Overall'] + SUB_TASKS_I + ALL_DATASETS_SPLITS['image']
|
| 51 |
COLUMN_NAMES_I = BASE_COLS + TASKS_I
|
| 52 |
DATA_TITLE_TYPE_I = BASE_DATA_TITLE_TYPE + \
|
| 53 |
+
['number'] * len(TASKS_I + SUB_TASKS_I)
|
| 54 |
|
| 55 |
+
SUB_TASKS_V = ["V-CLS", "V-QA", "V-RET", "V-MRET"]
|
| 56 |
TASKS_V = ['Video-Overall'] + SUB_TASKS_V + ALL_DATASETS_SPLITS['video']
|
| 57 |
COLUMN_NAMES_V = BASE_COLS + TASKS_V
|
| 58 |
DATA_TITLE_TYPE_V = BASE_DATA_TITLE_TYPE + \
|
| 59 |
+
['number'] * len(TASKS_V + SUB_TASKS_V)
|
| 60 |
|
| 61 |
+
SUB_TASKS_D = ['ViDoRe-V1', 'ViDoRe-V2', 'VisRAG', 'VisDoc-OOD']
|
| 62 |
+
TASKS_D = ['Visdoc-Overall'] + SUB_TASKS_D + ALL_DATASETS_SPLITS['visdoc']
|
| 63 |
COLUMN_NAMES_D = BASE_COLS + TASKS_D
|
| 64 |
DATA_TITLE_TYPE_D = BASE_DATA_TITLE_TYPE + \
|
| 65 |
+
['number'] * len(TASKS_D + SUB_TASKS_D)
|
| 66 |
|
| 67 |
TABLE_INTRODUCTION = """**MMEB**: Massive MultiModal Embedding Benchmark \n
|
| 68 |
Models are ranked based on **Overall**"""
|
|
|
|
| 158 |
df[rank_name] = range(1, len(df) + 1)
|
| 159 |
return df
|
| 160 |
|
| 161 |
+
def add_color_to_column(df)
|
| 162 |
+
def render_color(text, color):
|
| 163 |
+
"""Renders the text in a specific color for Markdown."""
|
| 164 |
+
return f"<span style='color:{color};'>{text}</span>"
|
| 165 |
+
|
| 166 |
+
df = df.copy()
|
| 167 |
+
SUB_TASKS = SUB_TASKS_I + SUB_TASKS_V + SUB_TASKS_D
|
| 168 |
+
MOD_OVERALL = ['Image-Overall', 'Video-Overall', 'Visdoc-Overall']
|
| 169 |
+
assert all(col in df.columns for col in ["Overall"] + MOD_OVERALL + SUB_TASKS), f"Missing columns in DataFrame: {SUB_TASKS}"
|
| 170 |
+
renamed_columns = {'Overall': render_color('Overall', 'red')}
|
| 171 |
+
for col in MOD_OVERALL:
|
| 172 |
+
renamed_columns[col] = render_color(col, 'yellow')
|
| 173 |
+
for col in SUB_TASKS:
|
| 174 |
+
renamed_columns[col] = render_color(col, 'blue')
|
| 175 |
+
|
| 176 |
+
df.rename(columns=renamed_columns)
|
| 177 |
+
return df
|
| 178 |
+
|
| 179 |
def get_df():
|
| 180 |
"""Generates a DataFrame from the loaded data."""
|
| 181 |
all_data = load_data()
|